Cardinality of Set Union/Examples/3 Arbitrary Sets

From ProofWiki
Jump to navigation Jump to search

Example of Use of Cardinality of Set Union

Let $A_1, A_2, A_3$ be finite sets.

Let:

\(\ds \card {A_1}\) \(=\) \(\ds 10\)
\(\ds \card {A_2}\) \(=\) \(\ds 15\)
\(\ds \card {A_3}\) \(=\) \(\ds 20\)
\(\ds \card {A_1 \cap A_2}\) \(=\) \(\ds 8\)
\(\ds \card {A_2 \cap A_3}\) \(=\) \(\ds 9\)

Then:

$26 \le \card {A_1 \cup A_2 \cup A_3} \le 28$


Proof

We have that:

\(\ds A_1\) \(=\) \(\ds \paren {A_1 \setminus A_2} \cup \paren {A_1 \cap A_2}\) Set Difference Union Intersection
\(\ds \leadsto \ \ \) \(\ds \card {A_1}\) \(=\) \(\ds \card {A_1 \setminus A_2} + \card {A_1 \cap A_2} - \card {\paren {A_1 \setminus A_2} \cap \paren {A_1 \cap A_2} }\) Cardinality of Set Union
\(\ds \) \(=\) \(\ds \card {A_1 \setminus A_2} + \card {A_1 \cap A_2}\) as $\paren {A_1 \setminus A_2} \cap \paren {A_1 \cap A_2} = \O$
\(\ds \leadsto \ \ \) \(\ds 10\) \(=\) \(\ds \card {A_1 \setminus A_2} + 8\) substituting values
\(\ds \leadsto \ \ \) \(\ds \card {A_1 \setminus A_2}\) \(=\) \(\ds 2\)


and:

\(\ds A_3\) \(=\) \(\ds \paren {A_3 \setminus A_2} \cup \paren {A_2 \cap A_3}\) Set Difference Union Intersection
\(\ds \leadsto \ \ \) \(\ds \card {A_3}\) \(=\) \(\ds \card {A_3 \setminus A_2} + \card {A_2 \cap A_3} - \card {\paren {A_3 \setminus A_2} \cap \paren {A_2 \cap A_3} }\) Cardinality of Set Union
\(\ds \) \(=\) \(\ds \card {A_3 \setminus A_2} + \card {A_2 \cap A_3}\) as $\paren {A_3 \setminus A_2} \cap \paren {A_2 \cap A_3} = \O$
\(\ds \leadsto \ \ \) \(\ds 20\) \(=\) \(\ds \card {A_1 \setminus A_2} + 9\) substituting values
\(\ds \leadsto \ \ \) \(\ds \card {A_3 \setminus A_2}\) \(=\) \(\ds 11\)


Then:

\(\ds \card {\paren {A_1 \cup A_3} \setminus A_2}\) \(=\) \(\ds \card {A_1 \setminus A_2} + \card {A_3 \setminus A_2} - \card {\paren {A_1 \cap A_3} \setminus A_2}\)
\(\ds \) \(=\) \(\ds 2 + 11 - \card {\paren {A_1 \cap A_3} \setminus A_2}\) substituting values
\(\ds \) \(=\) \(\ds 13 - \card {\paren {A_1 \cap A_3} \setminus A_2}\)

But as $\card {A_1 \setminus A_2} = 2$, we have that:

$\card {\paren {A_1 \cap A_3} \setminus A_2} \le 2$

and so:

$11 \le \card {\paren {A_1 \cup A_3} \setminus A_2} \le 13$

and so:

$11 + \card {A_2} \le \card {\paren {A_1 \cup A_3} \setminus A_2} + \card {A_2} \le 13 + \card {A_2}$

We have that:

$A_1 \cup A_2 \cup A_3 = \paren {\paren {A_1 \cup A_3} \setminus A_2} + \cup A_2$

As $\card {A_2} = 15$ the result follows.

$\blacksquare$


Sources