Category:Axioms/Von Neumann-Bernays-Gödel Axioms
This category contains axioms related to Von Neumann-Bernays-Gödel Axioms.
The Axiom of Extension
Let $A$ and $B$ be classes.
Then:
- $\forall x: \paren {x \in A \iff x \in B} \iff A = B$
The Axiom of Pairing
For any two sets, there exists a set to which only those two sets are elements:
- $\forall a: \forall b: \exists c: \forall z: \paren {z = a \lor z = b \iff z \in c}$
The Axioms of Class Existence
\((\text B 1)\) | $:$ | \(\ds \exists X: \forall u, v: \tuple {u, v} \in X \iff u \in v \) | $\in$-relation | ||||||
\((\text B 2)\) | $:$ | \(\ds \forall X, Y: \exists Z: \forall u: u \in Z \iff u \in X \land u \in Y \) | intersection | ||||||
\((\text B 3)\) | $:$ | \(\ds \forall X: \exists Z: \forall u: u \in Z \iff u \notin X \) | complement | ||||||
\((\text B 4)\) | $:$ | \(\ds \forall X: \exists Z: \forall u: u \in Z \iff \exists v: \tuple {u, v} \in X \) | domain | ||||||
\((\text B 5)\) | $:$ | \(\ds \forall X: \exists Z: \forall u, v: \tuple {u, v} \in Z \iff u \in X \) | |||||||
\((\text B 6)\) | $:$ | \(\ds \forall X: \exists Z: \forall u, v, w: \tuple {\tuple {u, v}, w} \in Z \iff \tuple {\tuple {v, w}, u} \in X \) | |||||||
\((\text B 7)\) | $:$ | \(\ds \forall X: \exists Z: \forall u, v, w: \tuple {\tuple {u, v}, w} \in Z \iff \tuple {\tuple {u, w}, v} \in X \) |
The Axiom of Unions
For every set of sets $A$, there exists a set $x$ (the union set) that contains all and only those elements that belong to at least one of the sets in the $A$:
- $\forall A: \exists x: \forall y: \paren {y \in x \iff \exists z: \paren {z \in A \land y \in z} }$
The Axiom of Powers
For every set, there exists a set of sets whose elements are all the subsets of the given set.
- $\forall x: \exists y: \paren {\forall z: \paren {z \in y \iff \forall w: \paren {w \in z \implies w \in x} } }$
The Axiom of Replacement
For every mapping $f$ and set $x$ in the domain of $f$, the image $f \sqbrk x$ is a set.
Symbolically:
- $\forall Y: \map {\text{Fnc}} Y \implies \forall x: \exists y: \forall u: u \in y \iff \exists v: \tuple {v, u} \in Y \land v \in x$
where:
- $\map {\text{Fnc}} X := \forall x, y, z: \tuple {x, y} \in X \land \tuple {x, z} \in X \implies y = z$
and the notation $\tuple {\cdot, \cdot}$ is understood to represent Kuratowski's formalization of ordered pairs.
The Axiom of Infinity
There exists a set containing:
That is:
- $\exists x: \paren {\paren {\exists y: y \in x \land \forall z: \neg \paren {z \in y} } \land \forall u: u \in x \implies u^+ \in x}$
The Axiom of Foundation
For any non-empty class, there is an element of the class that shares no element with the class.
- $\forall X: X \ne \O \implies \exists y: y \in X \land y \cap X = \O$
The Axiom of Global Choice
There exists a mapping $f : V \setminus \set \O \to V$, where $V$ is the universal class, such that:
- $\forall x \in V: \map f x \in x$
Symbolically:
- $\exists A: \map {\text{Fnc}} A \land \forall x: x \ne \O \implies \exists y: y \in x \land \tuple {x, y} \in A$
Subcategories
This category has the following 7 subcategories, out of 7 total.
A
- Axioms/Axiom of Extension (10 P)
- Axioms/Axiom of Infinity (9 P)
- Axioms/Axiom of Pairing (10 P)
- Axioms/Axiom of Powers (7 P)
- Axioms/Axiom of Unions (9 P)
Pages in category "Axioms/Von Neumann-Bernays-Gödel Axioms"
The following 18 pages are in this category, out of 18 total.