Category:Converting Decimal Expansion of Rational Number to Fraction
Jump to navigation
Jump to search
This category contains pages concerning Converting Decimal Expansion of Rational Number to Fraction:
Let $x \in \Q$ be a rational number.
Let the decimal expansion of $x$ be:
- $0 \cdotp a_1 a_2 \ldots a_m \dot b_1 b_2 \ldots \dot b_n$
where $a_i: i \in \set {1, 2, \ldots, m}$ and $b_j: j \in \set {1, 2, \ldots, n}$ be the digits in the base $10$ expansion of $x$.
Then $x$ can be expressed as the following fraction:
- $x = \dfrac {a_1 a_2 \ldots a_m b_1 b_2 \ldots b_n - a_1 a_2 \ldots a_m} {10^m \times \paren {10^n - 1} }$
Subcategories
This category has only the following subcategory.
Pages in category "Converting Decimal Expansion of Rational Number to Fraction"
This category contains only the following page.