Category:Definitions/Algebras
Jump to navigation
Jump to search
This category contains definitions related to Algebras.
Related results can be found in Category:Algebras.
Let $R$ be a commutative ring.
An algebra over $R$ is an ordered pair $\struct {A, *}$ where:
- $A$ is an $R$-module
- $*: A^2 \to A$ is an $R$-bilinear mapping
Subcategories
This category has the following 2 subcategories, out of 2 total.
Pages in category "Definitions/Algebras"
The following 56 pages are in this category, out of 56 total.
A
C
- Definition:Canonical Homomorphism from Ring to Unital Algebra
- Definition:Cayley Algebra
- Definition:Cayley-Dickson Construction
- Definition:Commutative Algebra (Abstract Algebra)
- Definition:Commutator/Algebra
- Definition:Conjugate (Algebra)
- Definition:Conjugation (Abstract Algebra)
- Definition:Conjugation (Abstract Algebra)/Conjugate
D
F
N
U
- Definition:Underlying Module of Algebra
- Definition:Underlying Ring of Associative Algebra
- Definition:Unit of Algebra
- Definition:Unital Algebra
- Definition:Unital Algebra Homomorphism
- Definition:Unital Associative Commutative Algebra
- Definition:Unital Associative Commutative Algebra/Definition 1
- Definition:Unital Associative Commutative Algebra/Definition 2
- Definition:Unital Subalgebra
- Definition:Unital Subalgebra/Definition 1
- Definition:Unital Subalgebra/Definition 2
- Definition:Unitary Algebra
- Definition:Unitary Division Algebra
- Definition:Unitary Subalgebra