Category:Definitions/Categorical Statements
Jump to navigation
Jump to search
This category contains definitions related to Categorical Statements.
Related results can be found in Category:Categorical Statements.
Let $S$ and $P$ be predicates.
A categorical statement is a statement that can be expressed in one of the following ways in natural language:
\((A)\) | $:$ | Universal Affirmative: | Every $S$ is $P$ | ||||||
\((E)\) | $:$ | Universal Negative: | No $S$ is $P$ | ||||||
\((I)\) | $:$ | Particular Affirmative: | Some $S$ is $P$ | ||||||
\((O)\) | $:$ | Particular Negative: | Some $S$ is not $P$ |
Subcategories
This category has the following 11 subcategories, out of 11 total.
A
C
N
P
U
Pages in category "Definitions/Categorical Statements"
The following 20 pages are in this category, out of 20 total.
C
- Definition:Categorical Proposition
- Definition:Categorical Sentence
- Definition:Categorical Statement
- Definition:Categorical Statement/Abbreviation
- Definition:Categorical Statement/Also known as
- Definition:Categorical Statement/Predicate
- Definition:Categorical Statement/Subject
- Definition:Categorical Syllogism