Definition:Categorical Statement/Abbreviation
< Definition:Categorical Statement(Redirected from Definition:Abbreviated Form of Categorical Statement)
Jump to navigation
Jump to search
Definition
Let $S$ and $P$ be predicates.
A categorical statement connecting $S$ and $P$ can be presented in abbreviated form as:
- $\map {\mathbf \Phi} {S, P}$
where $\mathbf \Phi$ is one of either $\mathbf A$, $\mathbf E$, $\mathbf I$ or $\mathbf O$, signifying Universal Affirmative, Universal Negative, Particular Affirmative and Particular Negative respectively.
Thus:
\(\ds \map {\mathbf A} {S, P} \) | denotes | All $S$ are $P$ | |||||||
\(\ds \map {\mathbf E} {S, P} \) | denotes | No $S$ are $P$ | |||||||
\(\ds \map {\mathbf I} {S, P} \) | denotes | Some $S$ are $P$ | |||||||
\(\ds \map {\mathbf O} {S, P} \) | denotes | Some $S$ are not $P$ |
Linguistic Note
The letters $A$, $E$, $I$ and $O$ are assigned to the various categorical statements from the first and second vowels to appear in the Latin words:
- AffIrmo (I affirm)
- nEgO (I deny).
Sources
- 1973: Irving M. Copi: Symbolic Logic (4th ed.) ... (previous) ... (next): $4$: Propositional Functions and Quantifiers: $4.1$: Singular Propositions and General Propositions
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): syllogism
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): syllogism