Category:Definitions/Inner Products
This category contains definitions related to Inner Products.
Related results can be found in Category:Inner Products.
Complex Inner Product
Let $V$ be a vector space over a complex subfield $\GF$.
A (complex) inner product is a mapping $\innerprod \cdot \cdot: V \times V \to \GF$ that satisfies the complex inner product axioms:
\((1)\) | $:$ | Conjugate Symmetry | \(\ds \forall x, y \in V:\) | \(\ds \quad \innerprod x y = \overline {\innerprod y x} \) | |||||
\((2)\) | $:$ | Linearity in first argument | \(\ds \forall x, y \in V, \forall a \in \GF:\) | \(\ds \quad \innerprod {a x + y} z = a \innerprod x z + \innerprod y z \) | |||||
\((3)\) | $:$ | Non-Negative Definiteness | \(\ds \forall x \in V:\) | \(\ds \quad \innerprod x x \in \R_{\ge 0} \) | |||||
\((4)\) | $:$ | Positiveness | \(\ds \forall x \in V:\) | \(\ds \quad \innerprod x x = 0 \implies x = \mathbf 0_V \) |
That is, a (complex) inner product is a complex semi-inner product with the additional condition $(4)$.
Real Inner Product
Let $V$ be a vector space over a real subfield $\GF$.
A (real) inner product is a mapping $\innerprod \cdot \cdot: V \times V \to \GF$ that satisfies the real inner product axioms:
\((1')\) | $:$ | Symmetry | \(\ds \forall x, y \in V:\) | \(\ds \innerprod x y = \innerprod y x \) | |||||
\((2)\) | $:$ | Linearity in first argument | \(\ds \forall x, y \in V, \forall a \in \GF:\) | \(\ds \quad \innerprod {a x + y} z = a \innerprod x z + \innerprod y z \) | |||||
\((3)\) | $:$ | Non-Negative Definiteness | \(\ds \forall x \in V:\) | \(\ds \quad \innerprod x x \in \R_{\ge 0} \) | |||||
\((4)\) | $:$ | Positiveness | \(\ds \forall x \in V:\) | \(\ds \quad \innerprod x x = 0 \implies x = \mathbf 0_V \) |
That is, a (real) inner product is a real semi-inner product with the additional condition $(4)$.
Subcategories
This category has only the following subcategory.
D
Pages in category "Definitions/Inner Products"
The following 9 pages are in this category, out of 9 total.