Category:Definitions/Inverse Hyperbolic Sine
Jump to navigation
Jump to search
This category contains definitions related to Inverse Hyperbolic Sine.
Related results can be found in Category:Inverse Hyperbolic Sine.
The inverse hyperbolic sine is a multifunction defined as:
- $\forall z \in \C: \map {\sinh^{-1} } z := \set {w \in \C: z = \map \sinh w}$
where $\map \sinh w$ is the hyperbolic sine function.
Also see
Pages in category "Definitions/Inverse Hyperbolic Sine"
The following 21 pages are in this category, out of 21 total.
A
C
I
- Definition:Inverse Hyperbolic Sine
- Definition:Inverse Hyperbolic Sine/Also known as
- Definition:Inverse Hyperbolic Sine/Complex
- Definition:Inverse Hyperbolic Sine/Complex/Definition 1
- Definition:Inverse Hyperbolic Sine/Complex/Definition 2
- Definition:Inverse Hyperbolic Sine/Complex/Principal Branch
- Definition:Inverse Hyperbolic Sine/Real
- Definition:Inverse Hyperbolic Sine/Real/Definition 1
- Definition:Inverse Hyperbolic Sine/Real/Definition 2