Category:Definitions/P-adic Valuations
This category contains definitions related to P-adic Valuations.
Related results can be found in Category:P-adic Valuations.
Let $p \in \N$ be a prime number.
Integers
The $p$-adic valuation (on $\Z$) is the mapping $\nu_p^\Z: \Z \to \N \cup \set {+\infty}$ defined as:
- $\map {\nu_p^\Z} n := \begin {cases} +\infty & : n = 0 \\ \sup \set {v \in \N: p^v \divides n} & : n \ne 0 \end{cases}$
where:
Rational Numbers
Let the $p$-adic valuation on the integers $\nu_p^\Z$ be extended to $\nu_p^\Q: \Q \to \Z \cup \set {+\infty}$ by:
- $\map {\nu_p^\Q} {\dfrac a b} := \map {\nu_p^\Z} a - \map {\nu_p^\Z} b$
This mapping $\nu_p^\Q$ is called the $p$-adic valuation (on $\Q$) and is usually denoted $\nu_p: \Q \to \Z \cup \set {+\infty}$.
P-adic Numbers
Let $\struct {\Q_p, \norm {\,\cdot\,}_p}$ be the $p$-adic numbers.
The $p$-adic valuation on $p$-adic numbers is the function $\nu_p: \Q_p \to \Z \cup \set {+\infty}$ defined by:
- $\forall x \in \Q_p : \map {\nu_p} x = \begin {cases} -\log_p \norm x_p : x \ne 0 \\ +\infty : x = 0 \end {cases}$
Pages in category "Definitions/P-adic Valuations"
The following 11 pages are in this category, out of 11 total.
P
- Definition:P-adic Norm on Rational Numbers
- Definition:P-adic Norm/Rational Numbers
- Definition:P-adic Valuation
- Definition:P-adic Valuation on P-adic Numbers
- Definition:P-adic Valuation on Rational Numbers
- Definition:P-adic Valuation/Integers
- Definition:P-adic Valuation/P-adic Numbers
- Definition:P-adic Valuation/P-adic Numbers/Definition 1
- Definition:P-adic Valuation/P-adic Numbers/Definition 2
- Definition:P-adic Valuation/Rational Numbers