From ProofWiki
Jump to: navigation, search

This category contains definitions related to Subtraction.
Related results can be found in Category:Subtraction.

The subtraction operation in the domain of integers $\Z$ is written "$-$".

As the set of integers is the Inverse Completion of Natural Numbers, it follows that elements of $\Z$ are the isomorphic images of the elements of equivalence classes of $\N \times \N$ where two tuples are equivalent if the difference between the two elements of each tuples is the same.

Thus subtraction can be formally defined on $\Z$ as the operation induced on those equivalence classes as specified in the definition of integers.

It follows that:

$\forall a, b, c, d \in \N: \eqclass {\tuple {a, b} } \boxminus - \eqclass {\tuple {c, d} } \boxminus = \eqclass {\tuple {a, b} } \boxminus + \tuple {-\eqclass {\tuple {c, d} } \boxminus} = \eqclass {\tuple {a, b} } \boxminus + \eqclass {\tuple {d, c} } \boxminus$

Thus integer subtraction is defined between all pairs of integers, such that:

$\forall x, y \in \Z: x - y = x + \paren {-y}$