From ProofWiki
Jump to navigation Jump to search


The subtraction operation in the domain of integers $\Z$ is written "$-$".

As the set of integers is the Inverse Completion of Natural Numbers, it follows that elements of $\Z$ are the isomorphic images of the elements of equivalence classes of $\N \times \N$ where two tuples are equivalent if the difference between the two elements of each tuples is the same.

Thus subtraction can be formally defined on $\Z$ as the operation induced on those equivalence classes as specified in the definition of integers.

It follows that:

$\forall a, b, c, d \in \N: \eqclass {\tuple {a, b} } \boxminus - \eqclass {\tuple {c, d} } \boxminus = \eqclass {\tuple {a, b} } \boxminus + \tuple {-\eqclass {\tuple {c, d} } \boxminus} = \eqclass {\tuple {a, b} } \boxminus + \eqclass {\tuple {d, c} } \boxminus$

Thus integer subtraction is defined between all pairs of integers, such that:

$\forall x, y \in \Z: x - y = x + \paren {-y}$

Also known as

In the context of mathematical logic it is sometimes referred to as proper subtraction so as to distinguish it from the partial subtraction operation as defined on the natural numbers.