Category:Definitions/Unitary Modules
This category contains definitions related to Unitary Modules.
Related results can be found in Category:Unitary Modules.
Definition
<onlyinclude> Let $\struct {R, +_R, \times_R}$ be a ring with unity whose unity is $1_R$.
Let $\struct {G, +_G}$ be an abelian group.
A unitary module over $R$ is an $R$-algebraic structure with one operation $\struct {G, +_G, \circ}_R$ which is either a unitary left module or a unitary right module, the type is unspecified:
Unitary Left Module
Let $\struct {R, +_R, \times_R}$ be a ring.
Let $\struct {G, +_G}$ be an abelian group.
A unitary left module over $R$ is an $R$-algebraic structure $\struct {G, +_G, \circ}_R$ with one operation $\circ$, which satisfies the unitary left module axioms:
\((\text {UM} 1)\) | $:$ | Scalar Multiplication (Left) Distributes over Module Addition | \(\ds \forall \lambda \in R: \forall x, y \in G:\) | \(\ds \lambda \circ \paren {x +_G y} \) | \(\ds = \) | \(\ds \paren {\lambda \circ x} +_G \paren {\lambda \circ y} \) | |||
\((\text {UM} 2)\) | $:$ | Scalar Multiplication (Right) Distributes over Scalar Addition | \(\ds \forall \lambda, \mu \in R: \forall x \in G:\) | \(\ds \paren {\lambda +_R \mu} \circ x \) | \(\ds = \) | \(\ds \paren {\lambda \circ x} +_G \paren {\mu \circ x} \) | |||
\((\text {UM} 3)\) | $:$ | Associativity of Scalar Multiplication | \(\ds \forall \lambda, \mu \in R: \forall x \in G:\) | \(\ds \paren {\lambda \times_R \mu} \circ x \) | \(\ds = \) | \(\ds \lambda \circ \paren {\mu \circ x} \) | |||
\((\text {UM} 4)\) | $:$ | Unity of Scalar Ring | \(\ds \forall x \in G:\) | \(\ds 1_R \circ x \) | \(\ds = \) | \(\ds x \) |
Unitary Right Module
Let $\struct {R, +_R, \times_R}$ be a ring.
Let $\struct {G, +_G}$ be an abelian group.
A unitary right module over $R$ is an $R$-algebraic structure $\struct {G, +_G, \circ}_R$ with one operation $\circ$, which satisfies the unitary right module axioms:
\((\text {URM} 1)\) | $:$ | Scalar Multiplication Right Distributes over Module Addition | \(\ds \forall \lambda \in R: \forall x, y \in G:\) | \(\ds \paren {x +_G y} \circ \lambda \) | \(\ds = \) | \(\ds \paren {x \circ \lambda} +_G \paren {y \circ \lambda} \) | |||
\((\text {URM} 2)\) | $:$ | Scalar Multiplication Left Distributes over Scalar Addition | \(\ds \forall \lambda, \mu \in R: \forall x \in G:\) | \(\ds x \circ \paren {\lambda +_R \mu} \) | \(\ds = \) | \(\ds \paren {x \circ \lambda} +_G \paren {x\circ \mu} \) | |||
\((\text {URM} 3)\) | $:$ | Associativity of Scalar Multiplication | \(\ds \forall \lambda, \mu \in R: \forall x \in G:\) | \(\ds x \circ \paren {\lambda \times_R \mu} \) | \(\ds = \) | \(\ds \paren {x \circ \lambda} \circ \mu \) | |||
\((\text {URM} 4)\) | $:$ | Unity of Scalar Ring | \(\ds \forall x \in G:\) | \(\ds x \circ 1_R \) | \(\ds = \) | \(\ds x \) |
Also known as
A unitary module over $R$ can also be referred to as a unitary $R$-module.
A unitary module is also known as a unital module.
Also see
- Results about unitary modules can be found here.
Sources
- 1965: Seth Warner: Modern Algebra ... (previous) ... (next): Chapter $\text {V}$: Vector Spaces: $\S 26$. Vector Spaces and Modules
- 1989: Ephraim J. Borowski and Jonathan M. Borwein: Dictionary of Mathematics ... (previous) ... (next): module
Subcategories
This category has the following 5 subcategories, out of 5 total.
D
E
U
Pages in category "Definitions/Unitary Modules"
The following 7 pages are in this category, out of 7 total.