Category:Examples of Sigma-Algebras
Jump to navigation
Jump to search
This category contains examples of Sigma-Algebra.
Let $X$ be a set.
Let $\Sigma$ be a system of subsets of $X$.
$\Sigma$ is a $\sigma$-algebra over $X$ if and only if $\Sigma$ satisfies the sigma-algebra axioms:
\((\text {SA 1})\) | $:$ | Unit: | \(\ds X \in \Sigma \) | ||||||
\((\text {SA 2})\) | $:$ | Closure under Complement: | \(\ds \forall A \in \Sigma:\) | \(\ds \relcomp X A \in \Sigma \) | |||||
\((\text {SA 3})\) | $:$ | Closure under Countable Unions: | \(\ds \forall A_n \in \Sigma: n = 1, 2, \ldots:\) | \(\ds \bigcup_{n \mathop = 1}^\infty A_n \in \Sigma \) |
Pages in category "Examples of Sigma-Algebras"
The following 6 pages are in this category, out of 6 total.