Category:Sigma-Algebras

From ProofWiki
Jump to: navigation, search

This category contains results about Sigma-Algebras.
Definitions specific to this category can be found in Definitions/Sigma-Algebras.


Let $X$ be a set.

A $\sigma$-algebra $\mathcal R$ over $X$ is a system of subsets of $X$ with the following properties:

\((SA \, 1)\)   $:$   Unit:    \(\displaystyle X \in \mathcal R \)             
\((SA \, 2)\)   $:$   Closure under Complement:      \(\displaystyle \forall A \in \mathcal R:\) \(\displaystyle \complement_X \left({A}\right) \in \mathcal R \)             
\((SA \, 3)\)   $:$   Closure under Countable Unions:      \(\displaystyle \forall A_n \in \mathcal R: n = 1, 2, \ldots:\) \(\displaystyle \bigcup_{n \mathop = 1}^\infty A_n \in \mathcal R \)             

Subcategories

This category has only the following subcategory.

Pages in category "Sigma-Algebras"

The following 50 pages are in this category, out of 50 total.