Category:Hyperbolic Cotangent Function

From ProofWiki
Jump to navigation Jump to search

This category contains results about Hyperbolic Cotangent Function.


The hyperbolic cotangent function is defined on the complex numbers as:

$\coth: X \to \C$:
$\forall z \in X: \coth z := \dfrac {e^z + e^{-z} } {e^z - e^{-z}}$

where:

$X = \set {z : z \in \C, \ e^z - e^{-z} \ne 0}$

Also see

Category:Hyperbolic Sine Function
Category:Hyperbolic Cosine Function
Category:Hyperbolic Tangent Function
Category:Hyperbolic Secant Function
Category:Hyperbolic Cosecant Function
Category:Inverse Hyperbolic Cotangent