Category:Hyperbolic Secant Function

From ProofWiki
Jump to navigation Jump to search

This category contains results about Hyperbolic Secant Function.


The hyperbolic secant function is defined on the complex numbers as:

$\sech: X \to \C$:
$\forall z \in X: \sech z := \dfrac 2 {e^z + e^{-z} }$

where:

$X = \set {z: z \in \C, \ e^z + e^{-z} \ne 0}$

Also see

Category:Hyperbolic Sine Function
Category:Hyperbolic Cosine Function
Category:Hyperbolic Tangent Function
Category:Hyperbolic Cotangent Function
Category:Hyperbolic Cosecant Function