Category:P-Norms
Jump to navigation
Jump to search
This category contains results about $p$-norms.
Let $p \ge 1$ be a real number.
Let $\ell^p$ denote the $p$-sequence space.
Let $\mathbf x = \sequence {x_n} \in \ell^p$.
Then the $p$-norm of $\mathbf x$ is defined as:
- $\ds \norm {\mathbf x}_p = \paren {\sum_{n \mathop = 0}^\infty \size {x_n}^p}^{1/p}$
Pages in category "P-Norms"
The following 8 pages are in this category, out of 8 total.