Category:Power Series Expansion for Cosecant Function

From ProofWiki
Jump to navigation Jump to search

This category contains pages concerning Power Series Expansion for Cosecant Function:


The cosecant function has a Laurent series expansion:

\(\ds \csc x\) \(=\) \(\ds \sum_{n \mathop = 0}^\infty \dfrac {\paren {-1}^{n - 1} 2 \paren {2^{2 n - 1} - 1} B_{2 n} \, x^{2 n - 1} } {\paren {2 n}!}\)
\(\ds \) \(=\) \(\ds \frac 1 x + \frac x 6 + \frac {7 x^3} {360} + \frac {31 x^5} {15 \, 120} + \cdots\)


where $B_n$ denotes the Bernoulli numbers.


This converges for $0 < \size x < \pi$.

Pages in category "Power Series Expansion for Cosecant Function"

The following 2 pages are in this category, out of 2 total.