Category:Recurrence Relation for Euler Numbers
Jump to navigation
Jump to search
This category contains pages concerning Recurrence Relation for Euler Numbers:
Let $n \in \Z_{>0}$ be a (strictly) positive integer.
Then:
\(\ds E_{2 n}\) | \(=\) | \(\ds -\sum_{k \mathop = 0}^{n - 1} \dbinom {2 n} {2 k} E_{2 k}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds -\paren {\binom {2 n} 0 E_0 + \binom {2 n} 2 E_2 + \binom {2 n} 4 E_4 + \cdots + \binom {2 n} {2 n - 2} E_{2 n - 2} }\) |
where $E_n$ denotes the $n$th Euler number.
Pages in category "Recurrence Relation for Euler Numbers"
The following 2 pages are in this category, out of 2 total.