Recurrence Relation for Euler Numbers
Jump to navigation
Jump to search
Theorem
Let $n \in \Z_{>0}$ be a (strictly) positive integer.
Then:
\(\ds E_{2 n}\) | \(=\) | \(\ds -\sum_{k \mathop = 0}^{n - 1} \dbinom {2 n} {2 k} E_{2 k}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds -\paren {\binom {2 n} 0 E_0 + \binom {2 n} 2 E_2 + \binom {2 n} 4 E_4 + \cdots + \binom {2 n} {2 n - 2} E_{2 n - 2} }\) |
where $E_n$ denotes the $n$th Euler number.
Proof
\(\ds \forall n \in \Z_{>0}: \, \) | \(\ds \sum_{k \mathop = 0}^n \binom {2 n} {2 k} E_{2 k}\) | \(=\) | \(\ds 0\) | Sum of Euler Numbers by Binomial Coefficients Vanishes | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \sum_{k \mathop = 0}^{n - 1} \dbinom {2 n} {2 k} E_{2 k} + \dbinom {2 n} {2 n} E_{2 n}\) | \(=\) | \(\ds 0\) | separating out case where $k = n$ | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds E_{2 n}\) | \(=\) | \(\ds -\sum_{k \mathop = 0}^{n - 1} \dbinom {2 n} {2 k} E_{2 k}\) | Binomial Coefficient with Self: $\dbinom {2 n} {2 n} = 1$ |
$\blacksquare$
Also presented as
Recurrence Relation for Euler Numbers can also be presented using the alternative form of the Euler numbers:
\(\ds {E_n}^*\) | \(=\) | \(\ds -\sum_{k \mathop = 0}^{n - 1} \paren {-1}^{n - 1} \dbinom {2 n} {2 k} {E_k}^*\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \binom {2 n} 2 {E_1}^* - \binom {2 n} 4 {E_2}^* + \cdots + \paren {-1}^{n - 2} \binom {2 n} {2 n - 2} {E_{n - 1} }^*\) |
Examples
- $\begin{array}{r|cccccccccc} E_k & \dbinom n 0 & & \dbinom n 2 & & \dbinom n 4 & & \dbinom n 6 & & \dbinom n 8 & & \dbinom n {10} \\ \hline E_0 = +1 & 1 E_0 & & & & & & & & & & & = 1 \\ E_2 = -1 & 1 E_0 & + & 1 E_2 & & & & & & & & & = 0 \\ E_4 = +5 & 1 E_0 & + & 6 E_2 & + & 1 E_4 & & & & & & & = 0 \\ E_6 = -61 & 1 E_0 & + & 15 E_2 & + & 15 E_4 & + & 1 E_6 & & & & & = 0 \\ E_8 = +1385 & 1 E_0 & + & 28 E_2 & + & 70 E_4 & + & 28 E_6 & + & 1 E_8 & & & = 0 \\ E_{10} = -50521 & 1 E_0 & + & 45 E_2 & + & 210 E_4 & + & 210 E_6 & + & 45 E_8 & + & 1 E_{10} & = 0 \\ \end{array}$
Also see
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 21$: Relationships of Bernoulli and Euler Numbers: $21.6$
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 23$: Bernoulli and Euler Numbers: Relationships of Bernoulli and Euler Numbers: $23.6.$