Category:Strict Orderings

From ProofWiki
Jump to navigation Jump to search

This category contains results about Strict Orderings.
Definitions specific to this category can be found in Definitions/Strict Orderings.


Definition 1

Let $\RR$ be a relation on a set $S$.

Then $\RR$ is a strict ordering (on $S$) if and only if the following two conditions hold:

\((1)\)   $:$   Asymmetry      \(\displaystyle \forall a, b \in S:\)    \(\displaystyle a \mathrel \RR b \)   \(\displaystyle \implies \)   \(\displaystyle \neg \paren {b \mathrel \RR a} \)             
\((2)\)   $:$   Transitivity      \(\displaystyle \forall a, b, c \in S:\)    \(\displaystyle \paren {a \mathrel \RR b} \land \paren {b \mathrel \RR c} \)   \(\displaystyle \implies \)   \(\displaystyle a \mathrel \RR c \)             


Definition 2

Let $\RR$ be a relation on a set $S$.

Then $\RR$ is a strict ordering (on $S$) if and only if the following two conditions hold:

\((1)\)   $:$   Antireflexivity      \(\displaystyle \forall a \in S:\) \(\displaystyle \neg \paren {a \mathrel \RR a} \)             
\((2)\)   $:$   Transitivity      \(\displaystyle \forall a, b, c \in S:\) \(\displaystyle \paren {a \mathrel \RR b} \land \paren {b \mathrel \RR c} \implies a \mathrel \RR c \)