Cayley-Dickson Construction from Real Star-Algebra is Commutative
Jump to navigation
Jump to search
Theorem
Let $A = \struct {A_F, \oplus}$ be a $*$-algebra.
Let $A' = \struct {A_F, \oplus'}$ be constructed from $A$ using the Cayley-Dickson construction.
Then $A$ is a real star-algebra if and only if $A'$ is a commutative algebra.
Proof
Let the conjugation operator on $A$ be $*$.
Let $\tuple {a, b}, \tuple {c, d} \in A'$.
Let $A$ be a real star-algebra.
\(\ds \tuple {a, b} \oplus' \tuple {c, d}\) | \(=\) | \(\ds \tuple {a \oplus c - d \oplus b^*, a^* \oplus d + c \oplus b}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \tuple {a \oplus c - d \oplus b^*, a^* \oplus d + c \oplus b}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \tuple {a \oplus c - d \oplus b, a \oplus d + c \oplus b}\) | Definition of Real Star-Algebra: $a = a^*$ and $b = b^*$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \tuple {c \oplus a - b \oplus d, c \oplus b + a \oplus d}\) | Real Star-Algebra is Commutative, Real Addition is Commutative | |||||||||||
\(\ds \) | \(=\) | \(\ds \tuple {c \oplus a - b \oplus d^*, c^* \oplus b + a \oplus d}\) | Definition of Real Star-Algebra: $d = d^*$ and $c = c^*$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \tuple {c, d} \oplus' \tuple {a, b}\) |
So $A'$ is a commutative algebra.
$\Box$
Let $A'$ be a commutative algebra.
By picking apart the above equations, it is clear that for $A'$ to be a commutative algebra it is necessary for $A$ to be both real and commutative.
Hence the result.
$\blacksquare$
Sources
- John C. Baez: The Octonions (2002): 2.2 The Cayley-Dickson Construction: Proposition $2$