Characterization of Character on Banach Algebra
Theorem
Let $\struct {A, \norm {\, \cdot \,} }$ be a Banach algebra over $\C$.
Let $\struct {A_+, \norm {\, \cdot \,}_{A_+} }$ be the unitization of $\struct {A, \norm {\, \cdot \,} }$.
Let $\phi : A_+ \to \C$ be a character.
Then either:
- $(1) \quad \map \phi {x, \lambda} = \lambda$ for each $\tuple {x, \lambda} \in A_+$
- $(2) \quad $ there exists a character $\widetilde \phi$ on $A$ such that $\map \phi {x, \lambda} = \map {\widetilde \phi} x + \lambda$ for each $\tuple {x, \lambda} \in A_+$.
Conversely, every map of the form given in $(2)$ is a character.
Proof
Note that since $\phi$ is linear, we have:
- $\map \phi {x, \lambda} = \map \phi {x, 0} + \lambda \map \phi {0, 1}$
Then from Character on Unital Banach Algebra is Unital Algebra Homomorphism, we have:
- $\map \phi {0, 1} = 1$
so that:
- $\map \phi {x, \lambda} = \map \phi {x, 0} + \lambda$
We first show that:
- $\map \phi {x, \lambda} = \lambda$
defines a character.
Let $\tuple {x, \lambda}, \tuple {y, \mu} \in A_+$ and $t \in \C$.
Then we have:
\(\ds \map \phi {x, \lambda} + t \map \phi {y, \mu}\) | \(=\) | \(\ds \lambda + t \mu\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \map \phi {x + t y, \lambda + t \mu}\) |
hence $\phi$ is linear.
We also have:
\(\ds \map \phi {x, \lambda} \map \phi {y, \mu}\) | \(=\) | \(\ds \lambda \mu\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \map \phi {x y, \lambda \mu}\) |
hence $\phi$ is a character.
In this case $\map \phi {x, 0} = 0$ for each $x \in A$.
Now suppose that $\map \phi {x, 0} \ne 0$ for each $x \in A$.
We show that:
- $\map {\widetilde \phi} x = \map \phi {x, 0}$
is a character on $A$.
For $\tuple {x, \lambda}, \tuple {y, \mu} \in A_+$ and $t \in \C$, we have:
\(\ds \map {\widetilde \phi} x + t \map {\widetilde \phi} y\) | \(=\) | \(\ds \map \phi {x, 0} + t \map \phi {y, 0}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \map \phi {x + t y, 0}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \map {\widetilde \phi} {x + t y}\) |
and:
\(\ds \map {\widetilde \phi} x \map {\widetilde \phi} y\) | \(=\) | \(\ds \map \phi {x, 0} \map \phi {y, 0}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \map \phi {x y, 0}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \map {\widetilde \phi} {x y}\) |
So $\widetilde \phi$ is a character on $A$ and $\phi$ has the form:
- $\map \phi {x, \lambda} = \map {\widetilde \phi} x + \lambda$
where $\widetilde \phi$ is a character on $A$.
So every character on $A_+$ has the form in $(2)$.
Conversely, let $\widetilde \phi$ be a character on $A$.
Define:
- $\map \phi {x, \lambda} = \map {\widetilde \phi} x + \lambda$
for each $\tuple {x, \lambda} \in A_+$.
Let $\tuple {x, \lambda}, \tuple {y, \mu} \in A_+$ and $t \in \C$.
Then we have:
\(\ds \map \phi {x + t y, \lambda + t \mu}\) | \(=\) | \(\ds \map {\widetilde \phi} {x + t y} + \paren {\lambda + t \mu}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\map {\widetilde \phi} x + \lambda} + t \paren {\map {\widetilde \phi} y + \mu}\) | since $\widetilde \phi$ is linear | |||||||||||
\(\ds \) | \(=\) | \(\ds \map \phi {x, \lambda} + t \map \phi {y, \mu}\) |
and:
\(\ds \map \phi {x, \lambda} \map \phi {y, \mu}\) | \(=\) | \(\ds \paren {\map {\widetilde \phi} x + \lambda} \paren {\map {\widetilde \phi} y + \mu}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \map {\widetilde \phi} x \map {\widetilde \phi} y + \lambda \map {\widetilde \phi} y + \mu \map {\widetilde \phi} x + \lambda \mu\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \map {\widetilde \phi} {x y + \lambda y + \mu x} + \lambda \mu\) | Definition of Character (Banach Algebra) | |||||||||||
\(\ds \) | \(=\) | \(\ds \map \phi {x y + \lambda y + \mu x, \lambda \mu}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \map \phi {\tuple {x, \lambda} \tuple {y, \mu} }\) | Definition of Unitization of Algebra over Field |
So $\phi$ is a character.
$\blacksquare$