Characterization of Compact Element in Frame or Locale

From ProofWiki
Jump to navigation Jump to search



Theorem

Let $L = \struct{S, \preceq}$ be a frame or locale.

Let $a \in S$.


The following statements are equivalent::

$(1)\quad a$ is a compact element
$(2)\quad \forall I \subseteq S : I$ is an ideal $: a \preceq \sup I \implies a \in I$
$(3)\quad \forall A \subseteq S : a \preceq \sup A \implies \exists F \subseteq A : F$ is finite $: a \preceq \sup F$
$(4)\quad \forall A \subseteq S : a = \sup A \implies \exists F \subseteq A : F$ is finite $: a = \sup F$


Proof

Recall, a frame or locale is a complete lattice satisfying the infinite join distributive law:

  \(\ds \forall a \in L, S \subseteq L:\) \(\ds a \wedge \bigvee S = \bigvee \set {a \wedge s : S \in S} \)      

where $\bigvee S$ denotes the supremum $\sup S$.


From Characterization of Compact Element in Complete Lattice:

Statements $(1)$, $(2)$ and $(3)$ are equivalent.

Statement $(3)$ implies Statement $(4)$

Let $a$ satisfies:

$\forall A \subseteq S : a \preceq \sup A \implies \exists F \subseteq A : F$ is finite $: a \preceq \sup F$


Let $A \subseteq S : a = \sup A$.

We have by hypothesis:

$\exists F \subseteq A : F$ is finite $: a \preceq \sup F$

From Supremum of Subset:

$\sup F \preceq \sup A = a$

By Ordering Axiom $(2)$: Transitivity:

$a = \sup F$


The result follows.

$\Box$

Statement $(4)$ implies Statement $(3)$

Let $a$ satisfies:

$\forall A \subseteq S : a = \sup A \implies \exists F \subseteq A : F$ is finite $: a = \sup F$


Let $A \subseteq S : a \preceq \sup A$.

From Predecessor is Infimum:

$a = a \wedge \sup A$

By the infinite join distributive law:

$a = \sup \set{a \wedge x : x \in A}$

We have by hypothesis:

$\exists F \subseteq A : F$ is finite $: a = \sup \set{a \wedge x : x \in F}$

By the infinite join distributive law:

$a = a \wedge \sup F$

From Predecessor is Infimum:

$a \preceq \sup F$

The result follows.

$\blacksquare$


Sources