Characterization of Homeomorphic Topological Spaces/Necessary Condition

From ProofWiki
Jump to navigation Jump to search



Theorem

Let $T_1 = \struct{S_1, \tau_1}$ be topological space.


Let $S_2$ be a set.

Let $\tau_2$ be a subset of the powerset $\powerset {S_2}$.


Let $\struct{S_2, \tau_2}$ be a topological space homeomorphic to $T_1$.


Then:

there exists a mapping $f : S_1 \to S_2$:
$(1)\quad f$ is a bijection
$(2)\quad f^\to \restriction_{\tau_1}$ is a bijection from $\tau_1$ to $\tau_2$
where
$f^\to \restriction_{\tau_1}$ denotes the restriction of $f^\to$ to $\tau_1$
$f^\to$ denotes the direct image mapping of $f$


Proof

Let $f: S_1 \to S_2$ be a homeomorphism.


By definition of a homeomorphism:

$f$ is a bijection
$f$ is an open mapping
$f$ is a continuous mapping


By definition of an open mapping:

$\forall U \in \tau_1 : f \sqbrk U \in \tau_2$

By definition of direct image mapping:

$\forall U \in \tau_1 : \map {f^\to} U \in \tau_2$


By definition of continuous mapping:

$\forall V \in \tau_2 : f^{-1} \sqbrk V \in \tau_1$

We have:

\(\ds \forall V \in \tau_2: \, \) \(\ds \map {f^\to} {f^{-1} \sqbrk V}\) \(=\) \(\ds f \sqbrk {f^{-1} \sqbrk V}\) Definition of Direct Image Mapping
\(\ds \) \(=\) \(\ds \map {\paren{f \circ f^{-1} } } V\) Definition of Composite Mapping
\(\ds \) \(=\) \(\ds V\) Image of Preimage of Subset under Surjection equals Subset


It follows that $f^\to \restriction_{\tau_1}$ is a surjection from $\tau_1$ to $\tau_2$.


$\blacksquare$