Characterization of Locale

From ProofWiki
Jump to navigation Jump to search



Theorem

Let $L = \struct{S, \preceq}$ be an ordered set.


The following statements are equivalent:

$(1)\quad L$ is a locale
$(2)\quad L$ is a frame
$(3)\quad L$ is a complete lattice satisfying the infinite join distributive law
$(4)\quad L$ is a complete Heyting algebra
$(5)\quad L$ is a complete Brouwerian lattice


Proof

Statement $(1)$ if and only if Statement $(2)$

The equivalence of Statement $(1)$ and Statement $(2)$ follows immediately from the definition of locale

$\Box$

Statement $(2)$ if and only if Statement $(3)$

The equivalence of Statement $(2)$ and Statement $(3)$ follows immediately from the definition of frame

$\Box$

Statement $(3)$ implies Statement $(4)$

Let $L$ be a complete lattice satisfying the infinite join distributive law.


Let $a, b \in S$.

Let $a \to b = \sup \set{c \in S : a \wedge c \preceq b}$


We have:

\(\ds a \wedge \paren{a \to b}\) \(=\) \(\ds a \wedge \sup \set{c : a \wedge c \preceq b}\) Definition of $a \to b$
\(\ds \) \(=\) \(\ds \sup \set{a \wedge c : a \wedge c \preceq b}\) Infinite join distributive law
\(\ds \) \(\preceq\) \(\ds b\) Definition of Supremum of Set


Hence:

$a \to b$ is the greatest element $c$ such that:
$c \wedge a \preceq b$

It follows that $a \to b$ is a relative psuedocomplement by definition.


Since $a, b$ were arbitrary, then:

$\forall a, b \in S : \exists a \to b \in S : a \to b$ is the greatest element $c \in L$ such that $a \wedge c \preceq b$

Hence $L$ is a Heyting algebra by definition.

$\Box$

Statement $(4)$ implies Statement $(5)$

Let $L$ be a complete Heyting algebra.


That $L$ is a complete Brouwerian lattice follows immediately from the definition of Heyting algebra.

$\Box$

Statement $(5)$ implies Statement $(3)$

Let $L$ be a complete Brouwerian lattice.


Let $A \subseteq S$.

Let $a \in S$.


Lemma 1

$\sup \set{a \wedge b : b \in A} \preceq a \wedge \sup A$

Proof of Lemma 1

By definition of meet::

$\forall b \in A : a \wedge b \preceq a, a \wedge b \preceq b$


By definition of upper bound:

$a$ is an upper bound for $\set{a \wedge b : b \in A}$

By definition of supremum:

$\sup \set{a \wedge b : b \in A} \preceq a$


From Finer Supremum Precedes Supremum:

$\sup \set{a \wedge b : b \in A} \preceq \sup A$


By definition of meet:

$\sup \set{a \wedge b : b \in A} \preceq a \wedge \sup A$

$\Box$


Lemma 2

$a \wedge \sup A \preceq \sup \set{a \wedge b : b \in A}$

Proof of Lemma 2

By definition of supremum:

$\forall b \in A : a \wedge b \preceq \sup \set{a \wedge b : b \in A}$

From Relative Pseudocomplement Preserves Order:

$\forall b \in A : a \to a \wedge b \preceq a \to \sup \set{a \wedge b : b \in A}$

By definition of supremum:

$\sup \set{a \to a \wedge b : b \in A} \preceq a \to \sup \set{a \wedge b : b \in A}$


From Inequality with Meet Operation is Equivalent to Inequality with Relative Pseudocomplement in Brouwerian Lattice:

$\forall b \in A : b \preceq a \to a \wedge b$

From Finer Supremum Precedes Supremum:

$\sup A \preceq \sup \set{a \to a \wedge b : b \in A}$

By Ordering Axiom $(3)$: Antisymmetry:

$\sup A \preceq a \to \sup \set{a \wedge b : b \in A}$

From Inequality with Meet Operation is Equivalent to Inequality with Relative Pseudocomplement in Brouwerian Lattice:

$a \wedge \sup A \preceq \sup \set{a \wedge b : b \in A}$

$\Box$


By Ordering Axiom $(1)$: Reflexivity:

$a \wedge \sup A = \sup \set{a \wedge b : b \in A}$


Since $A$ and $a$ were arbitrary:

$\forall A \subseteq S, a \in S : a \wedge \sup A = \sup \set{a \wedge b : b \in A}$

It follows that $L$ satisfies the infinite join distributive law by definition.

$\blacksquare$