Characterization of Locale
![]() | This article needs proofreading. Please check it for mathematical errors. If you believe there are none, please remove {{Proofread}} from the code.To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Proofread}} from the code. |
Theorem
Let $L = \struct{S, \preceq}$ be an ordered set.
The following statements are equivalent:
- $(1)\quad L$ is a locale
- $(2)\quad L$ is a frame
- $(3)\quad L$ is a complete lattice satisfying the infinite join distributive law
- $(4)\quad L$ is a complete Heyting algebra
- $(5)\quad L$ is a complete Brouwerian lattice
Proof
Statement $(1)$ if and only if Statement $(2)$
The equivalence of Statement $(1)$ and Statement $(2)$ follows immediately from the definition of locale
$\Box$
Statement $(2)$ if and only if Statement $(3)$
The equivalence of Statement $(2)$ and Statement $(3)$ follows immediately from the definition of frame
$\Box$
Statement $(3)$ implies Statement $(4)$
Let $L$ be a complete lattice satisfying the infinite join distributive law.
Let $a, b \in S$.
Let $a \to b = \sup \set{c \in S : a \wedge c \preceq b}$
We have:
\(\ds a \wedge \paren{a \to b}\) | \(=\) | \(\ds a \wedge \sup \set{c : a \wedge c \preceq b}\) | Definition of $a \to b$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \sup \set{a \wedge c : a \wedge c \preceq b}\) | Infinite join distributive law | |||||||||||
\(\ds \) | \(\preceq\) | \(\ds b\) | Definition of Supremum of Set |
Hence:
- $a \to b$ is the greatest element $c$ such that:
- $c \wedge a \preceq b$
It follows that $a \to b$ is a relative psuedocomplement by definition.
Since $a, b$ were arbitrary, then:
- $\forall a, b \in S : \exists a \to b \in S : a \to b$ is the greatest element $c \in L$ such that $a \wedge c \preceq b$
Hence $L$ is a Heyting algebra by definition.
$\Box$
Statement $(4)$ implies Statement $(5)$
Let $L$ be a complete Heyting algebra.
That $L$ is a complete Brouwerian lattice follows immediately from the definition of Heyting algebra.
$\Box$
Statement $(5)$ implies Statement $(3)$
Let $L$ be a complete Brouwerian lattice.
Let $A \subseteq S$.
Let $a \in S$.
Lemma 1
- $\sup \set{a \wedge b : b \in A} \preceq a \wedge \sup A$
Proof of Lemma 1
By definition of meet::
- $\forall b \in A : a \wedge b \preceq a, a \wedge b \preceq b$
By definition of upper bound:
- $a$ is an upper bound for $\set{a \wedge b : b \in A}$
By definition of supremum:
- $\sup \set{a \wedge b : b \in A} \preceq a$
From Finer Supremum Precedes Supremum:
- $\sup \set{a \wedge b : b \in A} \preceq \sup A$
By definition of meet:
- $\sup \set{a \wedge b : b \in A} \preceq a \wedge \sup A$
$\Box$
Lemma 2
- $a \wedge \sup A \preceq \sup \set{a \wedge b : b \in A}$
Proof of Lemma 2
By definition of supremum:
- $\forall b \in A : a \wedge b \preceq \sup \set{a \wedge b : b \in A}$
From Relative Pseudocomplement Preserves Order:
- $\forall b \in A : a \to a \wedge b \preceq a \to \sup \set{a \wedge b : b \in A}$
By definition of supremum:
- $\sup \set{a \to a \wedge b : b \in A} \preceq a \to \sup \set{a \wedge b : b \in A}$
- $\forall b \in A : b \preceq a \to a \wedge b$
From Finer Supremum Precedes Supremum:
- $\sup A \preceq \sup \set{a \to a \wedge b : b \in A}$
By Ordering Axiom $(3)$: Antisymmetry:
- $\sup A \preceq a \to \sup \set{a \wedge b : b \in A}$
- $a \wedge \sup A \preceq \sup \set{a \wedge b : b \in A}$
$\Box$
By Ordering Axiom $(1)$: Reflexivity:
- $a \wedge \sup A = \sup \set{a \wedge b : b \in A}$
Since $A$ and $a$ were arbitrary:
- $\forall A \subseteq S, a \in S : a \wedge \sup A = \sup \set{a \wedge b : b \in A}$
It follows that $L$ satisfies the infinite join distributive law by definition.
$\blacksquare$