Closure of Intersection and Symmetric Difference imply Closure of Union
Jump to navigation
Jump to search
Theorem
Let $\R R$ be a system of sets such that for all $A, B \in \RR$:
- $(1): \quad A \cap B \in \RR$
- $(2): \quad A \symdif B \in \RR$
where $\cap$ denotes set intersection and $\symdif$ denotes set symmetric difference.
Then:
- $\forall A, B \in \RR: A \cup B \in \RR$
where $\cup$ denotes set union.
Proof
Let $A, B \in \RR$.
From Union as Symmetric Difference with Intersection:
- $\paren {A \symdif B} \symdif \paren {A \cap B} = A \cup B$
By hypothesis:
- $A \cap B \in \RR$
and:
- $\paren {A \symdif B} \symdif \paren {A \cap B} \in \RR$
and so:
- $A \cup B \in \RR$
$\blacksquare$