Column Rank of Matrix equals Row Rank/Proof using Rank Factorization

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\mathbf A$ be a matrix.

The column rank of $\mathbf A$ is equal to the row rank of $\mathbf A$.


Proof






Let $\map c {\mathbf A}$ denote the column rank of $\mathbf A$.

Let $\map r {\mathbf A}$ denote the row rank of $\mathbf A$.


Let $\mathbf A$ be an $m \times n$ matrix whose column rank is $r$.

Therefore, the dimension of the column space of $\mathbf A$ is $r$.

Let $\mathbf c_1, \ldots, \mathbf c_r$ be any basis for the column space of $\mathbf A$.

Place these vectors as column vectors to form the $m \times r$ matrix $\mathbf C = \begin {bmatrix} \mathbf c_1 & \mathbf c_2 & \cdots & \mathbf c_r \end{bmatrix}$.

Therefore, every column vector of $\mathbf A$ is a linear combination of the columns of $\mathbf C$.

To be precise, if $\mathbf A = \begin {bmatrix} \mathbf a_1 & \mathbf a_2 & \cdots & \mathbf a_n \end {bmatrix}$ is an $m \times n$ matrix with $\mathbf a_j$ as the $j$-th column, then:

$\mathbf a_j = f_{1j} \mathbf c_1 + f_{2j} \mathbf c_2 + \cdots + f_{rj} \mathbf c_r \text { for } j = 1, \ldots, n$

where $f_{ij}$ are the scalar coefficients of $\mathbf a_j$ in terms of the basis $\mathbf c_1, \mathbf c_2, \ldots, \mathbf c_r$.

This implies that:

$\mathbf A = \mathbf C \mathbf F$

where $f_{ij}$ is the $\tuple {i, j}$th element of $\mathbf F$.

Using transposition of products, we note that $\mathbf A^\intercal = \mathbf F^\intercal \mathbf C^\intercal$.

From the definition of matrix multiplication, this means that each column of $\mathbf A^\intercal$ is a linear combination of the columns of $\mathbf F^\intercal$.

Therefore, the column space of $\mathbf A^\intercal$ is a subspace of the column space of $\mathbf F^\intercal$.

Hence:

$\map c {\mathbf A^\intercal} \le \map c {\mathbf F^\intercal}$

Now, $\mathbf F^\intercal$ is $n \times r$

Thus there are $r$ columns in $\mathbf F^\intercal$.

Hence:

$\map c {\mathbf A^\intercal} \le r = \map c {\mathbf A}$

This proves that $\map c {\mathbf A^\intercal} \le \map c {\mathbf A}$.


Now apply the result to the matrix $\mathbf A^\intercal$ to obtain the reverse inequality:

Since $\paren {\mathbf A^\intercal}^\intercal = \mathbf A$, we can write:

$\map c {\mathbf A} = \map c {\paren {\mathbf A^\intercal}^\intercal} \le \map c {\mathbf A^\intercal}$

This proves $\map c {\mathbf A} \le \map c {\mathbf A^\intercal}$.

We have, therefore, proved:

$\map c {\mathbf A^\intercal} \le \map c {\mathbf A}$

and the reverse inequality:

$\map c {\mathbf A} \le \map c {\mathbf A^\intercal}$

Therefore:

$\map c {\mathbf A} = \map c {\mathbf A^\intercal}$

$\blacksquare$


Sources