Combination Theorem for Bounded Real-Valued Functions/Multiple Rule

From ProofWiki
Jump to navigation Jump to search



Theorem

Let $\struct{S, \tau_S}$ be a topological space.

Let $\R$ denote the real number line.

Let $f :S \to \R$ be bounded real-valued function.

Let $\lambda \in \R$.

Let $\lambda f : S \to \R$ be the pointwise scalar multiplication of $f$ by $\lambda$, that is, $\lambda f$ is the mappping defined by:

$\forall s \in S : \map {\paren{\lambda f} } s = \lambda \map f s$


Then:

$\lambda f$ is a bounded real-valued function


Proof

By definition of bounded real-valued function

$\exists M_f \in \R_{\ge 0} : \forall s \in S : \size{\map f s} \le M_f$


Let $M = \size{\lambda} M_f$.


We have:

\(\ds \forall s \in S: \, \) \(\ds \size{\map {\paren{\lambda f} } s}\) \(=\) \(\ds \size{\lambda \map f s}\) Definition of Pointwise Scalar Multiplication of Real-Valued Function
\(\ds \) \(=\) \(\ds \size{\lambda} \size{\map f s}\) Absolute Value Function is Completely Multiplicative
\(\ds \) \(\le\) \(\ds \size{\lambda} M_f\) Definition of Bounded Real-Valued Function
\(\ds \) \(=\) \(\ds M\) definition of $M$


It follows that $\lambda f$ is a bounded real-valued function by definition.

$\blacksquare$