Commutative and Associative Product on Space of Distributions does not Exist
Theorem
Let $\map {\DD'} \R$ be the distribution space.
Let $\alpha \in \map {C^\infty} \R$ be a smooth function.
Let $\circ$ be a product operation on $\map {\DD'} \R$.
Suppose:
- $\forall T \in \map {\DD'} \R : \forall \alpha \in \map {C^\infty} \R : \alpha \circ T := \alpha \cdot T$
where $\cdot$ stands for multiplication of distribution by a smooth function.
Suppose $\circ$ is commutative and associative.
Then $\circ$ does not exist.
Proof
Aiming for a contradiction, suppose there is such a product.
Let $\delta \in \map {\DD'} \R$ be the Dirac delta distribution.
We also have that $\ds \PV \frac 1 x$ is a distribution.
Let $\phi, \psi \in \map \DD \R$ be test functions.
Then:
\(\ds x \cdot \map {\paren { \PV \frac 1 x} } \phi\) | \(=\) | \(\ds \map {\paren {\PV \frac 1 x} } {x \phi}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{\epsilon \mathop \to 0} \int_{\size x \mathop > \epsilon} \frac {x \map \phi x} x \rd x\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{\epsilon \mathop \to 0} \int_{\size x \mathop > \epsilon} \map \phi x \rd x\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \int_{- \infty}^\infty \map \phi x \rd x\) | Definition of Test Function | |||||||||||
\(\ds \) | \(=\) | \(\ds \map {\bf 1} \phi\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds c\) | $c \in \R$ |
Here $\mathbf 1$ is the distribution associated to the real function defined by:
- $\mathbf 1 : \R \to 1$
Consider the product $\ds \delta \cdot x \cdot \PV \frac 1 x$ in the distributional sense, where $\delta$ and $\PV \frac 1 x$ are distributions, and $x$ is a smooth function.
\(\ds \paren{\map \delta \psi \circ x} \circ \map {\paren{\PV \frac 1 x} } \phi\) | \(=\) | \(\ds \paren{x \circ \map \delta \psi} \circ \map {\paren{\PV \frac 1 x} } \phi\) | Commutativity in the first pair | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren{x \cdot \map \delta \psi} \circ \map {\paren{\PV \frac 1 x} } \phi\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \map \delta {x \psi} \circ \map {\paren{\PV \frac 1 x} } \phi\) | Definition of Multiplication of Distribution by Smooth Function | |||||||||||
\(\ds \) | \(=\) | \(\ds 0 \circ \map {\paren{\PV \frac 1 x} } \phi\) | Definition of Dirac Delta Distribution | |||||||||||
\(\ds \) | \(=\) | \(\ds 0 \cdot \map {\paren{\PV \frac 1 x} } \phi\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 0\) |
\(\ds \map \delta \psi \circ \paren {x \circ \map {\paren{\PV \frac 1 x} } \phi}\) | \(=\) | \(\ds \map \delta \psi \circ \paren {x \cdot \map {\paren{\PV \frac 1 x} } \phi}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \map \delta \psi \circ \map {\mathbf 1} \phi\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \map {\mathbf 1} \phi \circ \map \delta \psi\) | Commutativity | |||||||||||
\(\ds \) | \(=\) | \(\ds c \circ \map \delta \psi\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds c \cdot \map \delta \psi\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \map \delta {c \psi}\) | Definition of Multiplication of Distribution by Smooth Function | |||||||||||
\(\ds \) | \(\ne\) | \(\ds 0\) |
Altogether, we have that:
- $\ds \paren {\delta \circ x} \circ \PV \frac 1 x \ne \delta \circ \paren {x \circ \PV \frac 1 x}$
Hence, the associativity is violated, and we have reached a contradiction.
$\blacksquare$
Sources
- 2017: Amol Sasane: A Friendly Approach to Functional Analysis ... (previous) ... (next): Chapter $\S 6.4$: A glimpse of distribution theory. Multiplication by $C^\infty$ functions