Complex Integration by Substitution
Jump to navigation
Jump to search
![]() | This article needs proofreading. Please check it for mathematical errors. If you believe there are none, please remove {{Proofread}} from the code.To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Proofread}} from the code. |
Theorem
Let $\closedint a b$ be a closed real interval.
Let $\phi: \closedint a b \to \R$ be a real function which has a derivative on $\closedint a b$.
Let $f: A \to \C$ be a continuous complex function, where $A$ is a subset of the image of $\phi$.
If $\map \phi a \le \map \phi b$, then:
- $\ds \int_{\map \phi a}^{\map \phi b} \map f t \rd t = \int_a^b \map f {\map \phi u} \map {\phi'} u \rd u$
If $\map \phi a > \map \phi b$, then:
- $\ds \int_{\map \phi b}^{\map \phi a} \map f t \rd t = -\int_a^b \map f {\map \phi u} \map {\phi'} u \rd u$
Proof
Let $\Re$ and $\Im$ denote real parts and imaginary parts respectively.
Let $\map \phi a \le \map \phi b$.
Then:
\(\ds \int_{\map \phi a}^{\map \phi b} \map f t \rd t\) | \(=\) | \(\ds \int_{\map \phi a}^{\map \phi b} \map \Re {\map f t} \rd t + i \int_{\map \phi a}^{\map \phi b} \map \Im {\map f t} \rd t\) | Definition of Complex Riemann Integral | |||||||||||
\(\ds \) | \(=\) | \(\ds \int_a^b \map \Re {\map f {\map \phi u} } \map {\phi'} u \rd u + i \int_a^b \map \Im {\map f {\map \phi u} } \map {\phi'} u \rd u\) | Integration by Substitution | |||||||||||
\(\ds \) | \(=\) | \(\ds \int_a^b \map \Re {\map f {\map \phi u} \map {\phi'} u} \rd u + i \int_a^b \map \Im {\map f {\map \phi u} \map {\phi'} u} \rd u\) | Multiplication of Real and Imaginary Parts | |||||||||||
\(\ds \) | \(=\) | \(\ds \int_a^b \map f {\map \phi u} \map {\phi'} u \rd u\) |
Let $\map \phi a > \map \phi b$.
Then:
\(\ds \int_{\map \phi b}^{\map \phi a} \map f t \rd t\) | \(=\) | \(\ds \int_{\map \phi b}^{\map \phi a} \map \Re {\map f t} \rd t + i \int_{\map \phi b}^{\map \phi a} \map \Im {\map f t} \rd t\) | Definition of Complex Riemann Integral | |||||||||||
\(\ds \) | \(=\) | \(\ds \int_b^a \map \Re {\map f {\map \phi u} } \map {\phi'} u \rd u + i \int_b^a \map \Im {\map f {\map \phi u} } \map {\phi'} u \rd u\) | Integration by Substitution | |||||||||||
\(\ds \) | \(=\) | \(\ds -\int_a^b \map \Re {\map f {\map \phi u} } \map {\phi'} u \rd u - i \int_a^b \map \Im {\map f {\map \phi u} } \map {\phi'} u \rd u\) | Definition of Definite Integral | |||||||||||
\(\ds \) | \(=\) | \(\ds -\int_a^b \map f {\map \phi u} \map {\phi'} u \rd u\) |
$\blacksquare$
Sources
- 2001: Christian Berg: Kompleks funktionsteori $\S 2.2$