Congruence (Number Theory)/Examples
Jump to navigation
Jump to search
Examples of Congruence
Congruence Modulo $1$
Let $x \equiv y \pmod 1$ be defined as congruence on the real numbers modulo $1$:
- $\forall x, y \in \R: x \equiv y \pmod 1 \iff \exists k \in \Z: x - y = k$
That is, if their difference $x - y$ is an integer.
The equivalence classes of this equivalence relation are of the form:
- $\eqclass x 1 = \set {\dotsc, x - 2, x - 1, x, x + 1, x + 2, \dotsc}$
Each equivalence class has exactly one representative in the half-open real interval:
- $\hointr 0 1 = \set {x \in \R: 0 \le x < 1}$
Congruence Modulo $2 \pi$ as Angular Measurement
Let $\RR$ denote the relation on the real numbers $\R$ defined as:
- $\forall x, y \in \R: \tuple {x, y} \in \RR \iff \text {$x$ and $y$}$ measure the same angle in radians
Then $\RR$ is the congruence relation modulo $2 \pi$.
The equivalence classes of this equivalence relation are of the form:
- $\eqclass \theta {2 \pi} = \set {\theta + 2 k \pi: k \in \Z}$
Hence for example:
- $\eqclass 0 {2 \pi} = \set {2 k \pi: k \in \Z}$
and:
- $\eqclass {\dfrac \pi 2} {2 \pi} = \set {\dfrac {\paren {4 k + 1} \pi} 2: k \in \Z}$
Each equivalence class has exactly one representative in the half-open real interval:
- $\hointr 0 {2 \pi} = \set {x \in \R: 0 \le x < 2 \pi}$
and have a one-to-one correspondence with the points on the circumference of a circle.
Example: $8 \equiv -1 \pmod 3$
- $8 \equiv -1 \pmod 3$
Example: $42 \equiv 18 \pmod 8$
- $42 \equiv 18 \pmod 8$
Example: $365 \equiv 1 \pmod 7$
- $365 \equiv 1 \pmod 7$
Example: $1 \cdotp 6 \equiv 0 \cdotp 6 \pmod 1$
- $1 \cdotp 6 \equiv 0 \cdotp 6 \pmod 1$
Example: $5 \cdotp 74 \equiv -3 \cdotp 26 \pmod 3$
- $5 \cdotp 74 \equiv -3 \cdotp 26 \pmod 3$