Conjugacy Action on Group Elements is Group Action
Jump to navigation
Jump to search
Theorem
Let $\struct {G, \circ}$ be a group whose identity is $e$.
The conjugacy action on $G$:
- $\forall g, h \in G: g * h = g \circ h \circ g^{-1}$
is a group action on itself.
Proof
We have that:
- $e * x = e \circ x \circ e^{-1} = x$
and so Group Action Axiom $\text {GA} 2$ is fulfilled.
Group Action Axiom $\text {GA} 1$ is shown to be fulfilled thus:
\(\ds \paren {g_1 \circ g_2} * x\) | \(=\) | \(\ds \paren {g_1 \circ g_2} \circ x \circ \paren {g_1 \circ g_2}^{-1}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds g_1 \circ g_2 \circ x \circ g_2^{-1} \circ g_1^{-1}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds g_1 * \paren {g_2 \circ x \circ g_2^{-1} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds g_1 * \paren {g_2 * x}\) |
$\blacksquare$
Also see
- Stabilizer of Element under Conjugacy Action is Centralizer
- Orbit of Element under Conjugacy Action is Conjugacy Class
Sources
- 1965: J.A. Green: Sets and Groups ... (previous) ... (next): $\S 5.5$. Groups acting on sets: Example $103$
- 1982: P.M. Cohn: Algebra Volume 1 (2nd ed.) ... (previous) ... (next): $\S 3.3$: Group actions and coset decompositions: Examples of group actions: $\text{(v)}$
- 1996: John F. Humphreys: A Course in Group Theory ... (previous) ... (next): Chapter $10$: The Orbit-Stabiliser Theorem: Example $10.5$