Convergence in Sigma-Finite Measure
Jump to navigation
Jump to search
Theorem
Let $\struct {X, \Sigma, \mu}$ be a $\sigma$-finite measure space.
Let $\sequence {f_n}_{n \mathop \in \N}: f_n: X \to \R$ be a sequence of measurable functions.
Also, let $f, g: X \to \R$ be measurable functions.
Suppose that $f_n$ converges in measure to both $f$ and $g$ (in $\mu$).
Then $f$ and $g$ are equal $\mu$-almost everywhere.
Proof
As $\mu$ is $\sigma$-finite, there is an exhausting sequence $\sequence {E_m}_m$ in $\Sigma$ such that:
- $\forall m : \map \mu {E_m} < \infty$
- $\forall x \in X :\quad \cmod {\map f x - \map g x} \le \cmod {\map f x - \map {f_n} x} + \cmod {\map {f_n} x - \map g x}$
For all $m, k \in \N_{>0}$, since:
- $\ds \forall n \in \N :\quad \set {\cmod {f - g} > \frac 1 k } \subseteq \set {\cmod {f - f_n} > \frac 1 {2 k} } \cup \set {\cmod {f_n - g} > \frac 1 {2 k} }$
we have:
\(\ds \map \mu {\set {\cmod {f - g} > \frac 1 k} \cap E_m }\) | \(\le\) | \(\ds \map \mu {\paren {\set {\cmod {f - f_n} > \frac 1 {2 k} } \cup \set {\cmod {f_n - g} > \frac 1 {2 k} } } \cap E_m }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \map \mu { \paren {\set {\cmod {f - f_n} > \frac 1 {2 k} } \cap E_m } \cup \paren {\set {\cmod {f_n - g} > \frac 1 {2 k} } \cap E_m } }\) | Intersection Distributes over Union | |||||||||||
\(\ds \) | \(\le\) | \(\ds \map \mu {\set {\cmod {f - f_n} > \frac 1 {2 k} } \cap E_m } + \map \mu {\set {\cmod {f_n - g} > \frac 1 {2 k} } \cap E_m }\) | Measure is Subadditive | |||||||||||
\(\ds \) | \(\to\) | \(\ds 0\) | as $n \to \infty$ by hypothesis |
Thus:
- $\ds \forall m, k \in \N_{>0} : \map \mu {\set {\cmod {f - g} > \frac 1 k} \cap E_m} = 0$
By Monotone Convergence Theorem:
- $\ds \forall k \in \N_{>0} : \map \mu {\set {\cmod {f - g} > \frac 1 k} } = \lim_{m \mathop \to \infty} \map \mu {\set {\cmod {f - g} > \frac 1 k} \cap E_m} = 0$
Now, observe:
- $\ds \set {\cmod {f - g} > 0} = \bigcup_{k \mathop = 1}^\infty \set {\cmod {f - g} > \frac 1 k}$
Therefore:
\(\ds \map \mu {\set {\cmod {f - g} > 0} }\) | \(=\) | \(\ds \map \mu {\bigcup_{k\mathop = 1}^\infty \set {\cmod {f - g} > \frac 1 k} }\) | ||||||||||||
\(\ds \) | \(\le\) | \(\ds \sum_{k\mathop = 1}^\infty \map \mu {\set {\cmod {f - g} > \frac 1 k} }\) | Measure is Subadditive | |||||||||||
\(\ds \) | \(=\) | \(\ds 0\) |
$\blacksquare$
Sources
- 2005: René L. Schilling: Measures, Integrals and Martingales ... (previous) ... (next): $16.5$