Convergent Trigonometric Series is Periodic
Jump to navigation
Jump to search
Theorem
Let $\map S x$ be a trigonometric series:
- $\map S x = \dfrac {a_0} 2 + \ds \sum_{n \mathop = 1}^\infty \paren {a_n \cos n x + b_n \sin n x}$
Let $S$ be convergent.
Then $S$ is periodic:
- $\forall r \in \Z: \map S {x + 2 r \pi} = \map S x$
Proof
Let $\map S x$ converge to some $L \in \R$.
Let $r \in \Z$ be arbitrary.
Then:
\(\ds \map S {x + 2 r \pi}\) | \(=\) | \(\ds \dfrac {a_0} 2 + \sum_{n \mathop = 1}^\infty \paren {a_n \cos n \paren {x + 2 r \pi} + b_n \sin n \paren {x + 2 r \pi} }\) | Definition of $\map S {x + 2 r \pi}$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {a_0} 2 + \sum_{n \mathop = 1}^\infty \paren {a_n \map \cos {n x + 2 r n \pi} + b_n \map \sin {n x + 2 r n \pi} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {a_0} 2 + \sum_{n \mathop = 1}^\infty \paren {a_n \cos n x + b_n \sin n x}\) | Sine and Cosine are Periodic on Reals | |||||||||||
\(\ds \) | \(=\) | \(\ds \map S x\) | Definition of $\map S x$ |
$\blacksquare$
Sources
- 1961: I.N. Sneddon: Fourier Series ... (previous) ... (next): Chapter One: $\S 1$. Trigonometrical Series