De Morgan's Laws (Set Theory)/Relative Complement/Complement of Union
Jump to navigation
Jump to search
Theorem
Let $S, T_1, T_2$ be sets such that $T_1, T_2$ are both subsets of $S$.
Then, using the notation of the relative complement:
- $\relcomp S {T_1 \cup T_2} = \relcomp S {T_1} \cap \relcomp S {T_2}$
Proof 1
Let $T_1, T_2 \subseteq S$.
Then from Union is Smallest Superset:
- $T_1 \cup T_2 \subseteq S$
Hence:
\(\ds \relcomp S {T_1 \cup T_2}\) | \(=\) | \(\ds S \setminus \paren {T_1 \cup T_2}\) | Definition of Relative Complement | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {S \setminus T_1} \cap \paren {S \setminus T_2}\) | De Morgan's Laws: Difference with Union | |||||||||||
\(\ds \) | \(=\) | \(\ds \relcomp S {T_1} \cap \relcomp S {T_2}\) | Definition of Relative Complement |
$\blacksquare$
Proof 2
Let $x \in S$ througout.
\(\ds \) | \(\) | \(\ds x \in \relcomp S {T_1 \cup T_2}\) | ||||||||||||
\(\ds \) | \(\leadsto\) | \(\ds x \notin \paren {T_1 \cup T_2}\) | Definition of Relative Complement | |||||||||||
\(\ds \) | \(\leadsto\) | \(\ds \neg \paren {x \in T_1 \lor x \in T_2}\) | Definition of Set Union | |||||||||||
\(\ds \) | \(\leadsto\) | \(\ds x \notin T_1 \land x \notin T_2\) | De Morgan's Laws: Conjunction of Negations | |||||||||||
\(\ds \) | \(\leadsto\) | \(\ds x \in \relcomp S {T_1} \land x \in \relcomp S {T_2}\) | Definition of Relative Complement | |||||||||||
\(\ds \) | \(\leadsto\) | \(\ds x \in \relcomp S {T_1} \cap \relcomp S {T_2}\) | Definition of Set Intersection | |||||||||||
\(\ds \) | \(\leadsto\) | \(\ds \relcomp S {T_1 \cup T_2} \subseteq \relcomp S {T_1} \cap \relcomp S {T_2}\) | Definition of Subset |
\(\ds \) | \(\) | \(\ds x \in \relcomp S {T_1} \cap \relcomp S {T_2}\) | ||||||||||||
\(\ds \) | \(\leadsto\) | \(\ds x \in \relcomp S {T_1} \land x \in \relcomp S {T_2}\) | Definition of Set Intersection | |||||||||||
\(\ds \) | \(\leadsto\) | \(\ds x \notin T_1 \land x \notin T_2\) | Definition of Relative Complement | |||||||||||
\(\ds \) | \(\leadsto\) | \(\ds \neg \paren {x \in T_1 \lor x \in T_2}\) | De Morgan's Laws: Conjunction of Negations | |||||||||||
\(\ds \) | \(\leadsto\) | \(\ds x \notin \paren {T_1 \cup T_2}\) | Definition of Set Union | |||||||||||
\(\ds \) | \(\leadsto\) | \(\ds x \in \relcomp S {T_1 \cup T_2}\) | Definition of Relative Complement | |||||||||||
\(\ds \) | \(\leadsto\) | \(\ds \relcomp S {T_1} \cap \relcomp S {T_2} \subseteq \relcomp S {T_1 \cup T_2}\) | Definition of Set Intersection |
By definition of set equality:
- $\relcomp S {T_1 \cup T_2} = \relcomp S {T_1} \cap \relcomp S {T_2}$
$\blacksquare$
Source of Name
This entry was named for Augustus De Morgan.
Sources
- 1960: Paul R. Halmos: Naive Set Theory ... (previous) ... (next): $\S 5$: Complements and Powers
- 1961: John G. Hocking and Gail S. Young: Topology ... (previous) ... (next): A Note on Set-Theoretic Concepts: $(6)$
- 1965: Seth Warner: Modern Algebra ... (previous) ... (next): Chapter $\text I$: Algebraic Structures: $\S 3$: Unions and Intersections of Sets: Theorem $3.2$
- 1975: T.S. Blyth: Set Theory and Abstract Algebra ... (previous) ... (next): $\S 1$. Sets; inclusion; intersection; union; complementation; number systems: $\text{(j)}$
- 1993: Keith Devlin: The Joy of Sets: Fundamentals of Contemporary Set Theory (2nd ed.) ... (previous) ... (next): $\S 1$: Naive Set Theory: $\S 1.2$: Operations on Sets: Exercise $1.2.2 \ \text{(iv)}$
- 2005: René L. Schilling: Measures, Integrals and Martingales ... (previous) ... (next): $\S 2$