De Morgan's Laws (Set Theory)/Relative Complement/General Case
Jump to navigation
Jump to search
Theorem
Let $S$ be a set.
Let $T$ be a subset of $S$.
Let $\powerset T$ be the power set of $T$.
Let $\mathbb T \subseteq \powerset T$.
Then:
Complement of Intersection
- $\ds \relcomp S {\bigcap \mathbb T} = \bigcup_{H \mathop \in \mathbb T} \relcomp S H$
Complement of Union
- $\ds \relcomp S {\bigcup \mathbb T} = \bigcap_{H \mathop \in \mathbb T} \relcomp S H$
Source of Name
This entry was named for Augustus De Morgan.