Definite Integral from 0 to Pi of Sine of m x by Sine of n x
Jump to navigation
Jump to search
Theorem
Let $m, n \in \Z$ be integers.
Then:
- $\ds \int_0^\pi \sin m x \sin n x \rd x = \begin{cases} 0 & : m \ne n \\ \dfrac \pi 2 & : m = n \end{cases}$
That is:
- $\ds \int_0^\pi \sin m x \sin n x \rd x = \dfrac \pi 2 \delta_{m n}$
where $\delta_{m n}$ is the Kronecker delta.
Proof
Let $m \ne n$.
\(\ds \int \sin m x \sin n x \rd x\) | \(=\) | \(\ds \frac {\sin \paren {m - n} x} {2 \paren {m - n} } - \frac {\sin \paren {m + n} x} {2 \paren {m + n} } + C\) | Primitive of $\sin m x \sin n x$ | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \int_0^\pi \sin m x \sin n x \rd x\) | \(=\) | \(\ds \intlimits {\frac {\sin \paren {m - n} x} {2 \paren {m - n} } - \frac {\sin \paren {m + n} x} {2 \paren {m + n} } } 0 \pi\) | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\frac {\sin \paren {m - n} \pi} {2 \paren {m - n} } - \frac {\sin \paren {m + n} \pi} {2 \paren {m + n} } }\) | ||||||||||||
\(\ds \) | \(\) | \(\, \ds - \, \) | \(\ds \paren {\frac {\sin 0} {2 \paren {m - n} } - \frac {\sin 0} {2 \paren {m + n} } }\) | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\sin \paren {m - n} \pi} {2 \paren {m - n} } - \frac {\sin \paren {m + n} \pi} {2 \paren {m + n} }\) | Sine of Zero is Zero | |||||||||||
\(\ds \) | \(=\) | \(\ds 0\) | Sine of Multiple of Pi |
$\Box$
When $m = n$ we have:
\(\ds \int \sin m x \sin m x \rd x\) | \(=\) | \(\ds \int \sin^2 m x \rd x\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac x 2 - \frac {\sin 2 m x} {4 m} + C\) | Primitive of $\sin^2 m x$ | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \int_0^\pi \sin m x \sin m x \rd x\) | \(=\) | \(\ds \intlimits {\frac x 2 - \frac {\sin 2 m x} {4 m} } 0 \pi\) | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\frac \pi 2 - \frac {\sin \paren {2 m \pi} } {4 m} } - \paren {\frac 0 2 - \frac {\sin 0} {4 m} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac \pi 2 - \frac {\sin \paren {2 m \pi} } {4 m}\) | Sine of Zero is Zero | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac \pi 2\) | Sine of Multiple of Pi |
$\blacksquare$
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 15$: Definite Integrals involving Trigonometric Functions: $15.26$