Definition:Inverse Cosecant/Real/Arccosecant

From ProofWiki
Jump to: navigation, search

Definition

Arccosecant Function

From Shape of Cosecant Function, we have that $\csc x$ is continuous and strictly decreasing on the intervals $\hointr {-\dfrac \pi 2} 0$ and $\hointl 0 {\dfrac \pi 2}$.

From the same source, we also have that:

$\csc x \to + \infty$ as $x \to 0^+$
$\csc x \to - \infty$ as $x \to 0^-$


Let $g: \hointr {-\dfrac \pi 2} 0 \to \hointl {-\infty} {-1}$ be the restriction of $\csc x$ to $\hointr {-\dfrac \pi 2} 0$.

Let $h: \hointl 0 {\dfrac \pi 2} \to \hointr 1 \infty$ be the restriction of $\csc x$ to $\hointl 0 {\dfrac \pi 2}$.

Let $f: \closedint {-\dfrac \pi 2} {\dfrac \pi 2} \setminus 0 \to \R \setminus \openint {-1} 1$:

$\map f x = \begin{cases} \map g x & : -\dfrac \pi 2 \le x < 0 \\ \map h x & : 0 < x \le \dfrac \pi 2 \end{cases}$


From Inverse of Strictly Monotone Function, $\map g x$ admits an inverse function, which will be continuous and strictly decreasing on $\hointl {-\infty} {-1}$.

From Inverse of Strictly Monotone Function, $\map h x$ admits an inverse function, which will be continuous and strictly decreasing on $\hointr 1 \infty$.

As both the domain and range of $g$ and $h$ are disjoint, it follows that:

$\map {f^{-1} } x = \begin{cases} \map {g^{-1} } x & : x \le -1 \\ \map {h^{-1} } x & : x \ge 1 \end{cases}$


This function $\map {f^{-1} } x$ is called arccosecant of $x$ and is written $\arccsc x$.

Thus:

The domain of $\arccsc x$ is $\R \setminus \openint {-1} 1$
The image of $\arccsc x$ is $\closedint {-\dfrac \pi 2} {\dfrac \pi 2} \setminus 0$.


Also denoted as

The following versions of $\arccsc$ are sometimes encountered:

$\operatorname {arccosec}$, particularly in older texts
$\operatorname {acsc}$ in various mathematical software packages, but this is rare.


Caution

There exists the a popular but misleading notation $\csc^{-1} x$, which is supposed to denote the inverse cosecant function.

However, note that as $\csc x$ is not an injection, it does not have an inverse.

The $\arccsc$ function as defined here has a well-specified image which (to a certain extent) is arbitrarily chosen for convenience.

Therefore it is preferred to the notation $\csc^{-1} x$, which (as pointed out) can be confusing and misleading.

Sometimes, $\operatorname {Csc}^{-1}$ (with a capital $\text {C}$) is taken to mean the same as $\arccsc$, although this can also be confusing due to the visual similarity between that and the lowercase $\text {c}$.


Also see

  • Results about inverse cosecant can be found here.


Other inverse trigonometrical ratios


Sources