Definition:Asymmetric Relation/Definition 1
Jump to navigation
Jump to search
Definition
Let $\RR \subseteq S \times S$ be a relation in $S$.
$\RR$ is asymmetric if and only if:
- $\tuple {x, y} \in \RR \implies \tuple {y, x} \notin \RR$
That is:
- $x \mathop \RR y \implies \neg \paren {y \mathop \RR x}$
Antisymmetric and Asymmetric Relations
Note the difference between:
- An asymmetric relation, in which the fact that $\tuple {x, y} \in \RR$ means that $\tuple {y, x}$ is definitely not in $\RR$
and:
- An antisymmetric relation, in which there may be instances of both $\tuple {x, y} \in \RR$ and $\tuple {y, x} \in \RR$ but if there are, then it means that $x$ and $y$ have to be the same object.
Also defined as
Some sources (possibly erroneously or carelessly) gloss over the differences between this and the definition for an antisymmetric relation, and end up using a definition for antisymmetric which comes too close to one for asymmetric.
An example is 1964: Steven A. Gaal: Point Set Topology:
- [After having discussed antireflexivity] ... antisymmetry expresses the additional fact that at most one of the possibilities $a \mathrel \RR b$ or $b \mathrel \RR a$ can take place.
Some sources specifically define a relation as anti-symmetric what has been defined on $\mathsf{Pr} \infty \mathsf{fWiki}$ as asymmetric.
From 1955: John L. Kelley: General Topology: Chapter $0$: Relations:
- ... the relation $R$ is anti-symmetric iff it is never the case that both $x R y$ and $y R x$.
Also see
- Results about asymmetric relations can be found here.
Sources
- 1951: Nathan Jacobson: Lectures in Abstract Algebra: Volume $\text { I }$: Basic Concepts ... (previous) ... (next): Introduction $\S 4$: The natural numbers
- 1955: John L. Kelley: General Topology ... (previous) ... (next): Chapter $0$: Relations
- 1964: Steven A. Gaal: Point Set Topology ... (previous) ... (next): Introduction to Set Theory: $1$. Elementary Operations on Sets
- 1965: E.J. Lemmon: Beginning Logic ... (previous) ... (next): Chapter $4$: The Predicate Calculus $2$: $5$ Properties of Relations
- 1979: John E. Hopcroft and Jeffrey D. Ullman: Introduction to Automata Theory, Languages, and Computation ... (previous) ... (next): Chapter $1$: Preliminaries: $1.5$ Relations: Properties of Relations $5)$
- 1996: Winfried Just and Martin Weese: Discovering Modern Set Theory. I: The Basics ... (previous) ... (next): Part $1$: Not Entirely Naive Set Theory: Chapter $1$: Pairs, Relations, and Functions
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): symmetric relation
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): symmetric relation