Definition:Canonical Injection (Abstract Algebra)/General Definition

From ProofWiki
Jump to: navigation, search

Definition

Let $\struct {S_1, \circ_1}, \struct {S_2, \circ_2}, \dotsc, \struct {S_j, \circ_j}, \dotsc, \struct {S_n, \circ_n}$ be algebraic structures with identities $e_1, e_2, \dotsc, e_j, \dotsc, e_n$ respectively.

Then the canonical injection $\displaystyle \inj_j: \struct {S_j, \circ_j} \to \prod_{i \mathop = 1}^n \struct {S_i, \circ_i}$ is defined as:

$\map {\inj_j} x = \tuple {e_1, e_2, \dotsc, e_{j - 1}, x, e_{j + 1}, \dotsc, e_n}$


Also see


Sources