Category:Definitions/Canonical Injections

From ProofWiki
Jump to navigation Jump to search

This category contains definitions related to Canonical Injections in the context of Abstract Algebra.
Related results can be found in Category:Canonical Injections.


Let $\struct {S_1, \circ_1}$ and $\struct {S_2, \circ_2}$ be algebraic structures with identities $e_1, e_2$ respectively.


The following mappings:

$\inj_1: \struct {S_1, \circ_1} \to \struct {S_1, \circ_1} \times \struct {S_2, \circ_2}: \forall x \in S_1: \map {\inj_1} x = \tuple {x, e_2}$
$\inj_2: \struct {S_2, \circ_2} \to \struct {S_1, \circ_1} \times \struct {S_2, \circ_2}: \forall x \in S_2: \map {\inj_2} x = \tuple {e_1, x}$

are called the canonical injections.

Pages in category "Definitions/Canonical Injections"

The following 2 pages are in this category, out of 2 total.