Definition:Collatz Sequence
Jump to navigation
Jump to search
Definition
Let $f: \N \to \N$ be the mapping defined on the natural numbers as follows:
- $\forall n \in \N: \map f n = \begin{cases} n / 2 & : n \text { even} \\ 3 n + 1 & : n \text { odd} \end{cases}$
For any given value of $n$, let the sequence $\sequence {S_k}$ be defined:
- $\forall k \in \N: S_k = \begin {cases} n & : k = 0 \\ \map f {S_{k - 1} } & : k > 0 \end {cases}$
Then $\sequence {S_k}$ is known as a Collatz sequence.
Also see
Source of Name
This entry was named for Lothar Collatz.
Sources
- Weisstein, Eric W. "Collatz Problem." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/CollatzProblem.html