Definition:Compatible Module Structures/Definition 3
Jump to navigation
Jump to search
Definition
Let $A$ and $B$ be rings.
Let $\struct {M, +}$ be an abelian group.
Let $* : A \times M \to M$ and $\circledast: B \times M \to M$ be left or right linear ring actions so that:
- $(1): \quad \struct {M, +, *}$ is a left or right module over $A$
- $(2): \quad \struct {M, +, \circledast}$ is a left or right module over $B$
The module structures are compatible if and only if for all $b \in A$, the homothety $h_b : M \to M$ is an endomorphism of the $A$-module $M$.
That is, if and only if the image of the ring representation $B \to \map {\operatorname {End} } M$ is contained in the endomorphism ring $\map {\operatorname {End}_A} M$.
Also see
Sources
![]() | There are no source works cited for this page. Source citations are highly desirable, and mandatory for all definition pages. Definition pages whose content is wholly or partly unsourced are in danger of having such content deleted. To discuss this page in more detail, feel free to use the talk page. |