Definition:Complete Elliptic Integral of the Third Kind/Definition 2
Jump to navigation
Jump to search
Special Function
- $\ds \map \Pi {k, n} = \int \limits_0^1 \frac {\d v} {\paren {1 + n v^2} \sqrt {\paren {1 - v^2} \paren {1 - k^2 v^2} } }$
is the complete elliptic integral of the third kind, and is a function of the variables:
- $k$, defined on the interval $0 < k < 1$
- $n \in \Z$
Also see
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 34$: Elliptic Functions: Complete Elliptic Integral of the Third Kind: $34.6$
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 35$: Elliptic Functions: Complete Elliptic Integral of the Third Kind: $35.6.$