Definition:Constructed Semantics/Instance 3
Jump to navigation
Jump to search
Definition
Let $\LL_0$ be the language of propositional logic.
The constructed semantics $\mathscr C_3$ for $\LL_0$ is used for the following results:
Structures
Define the structures of $\mathscr C_3$ as mappings $v$ by the Principle of Recursive Definition, as follows.
Let $\PP_0$ be the vocabulary of $\LL_0$.
Let a mapping $v: \PP_0 \to \set {0, 1, 2}$ be given.
Next, regard the following as definitional abbreviations:
\((1)\) | $:$ | Conjunction | \(\ds \mathbf A \land \mathbf B \) | \(\ds \stackrel {\text{def} } = \) | \(\ds \map \neg {\neg \mathbf A \lor \neg \mathbf B} \) | ||||
\((2)\) | $:$ | Conditional | \(\ds \mathbf A \implies \mathbf B \) | \(\ds \stackrel {\text{def} } = \) | \(\ds \neg \mathbf A \lor \mathbf B \) | ||||
\((3)\) | $:$ | Biconditional | \(\ds \mathbf A \iff \mathbf B \) | \(\ds \stackrel {\text{def} } = \) | \(\ds \paren {\mathbf A \implies \mathbf B} \land \paren {\mathbf B \implies \mathbf A} \) |
It only remains to define $\map v {neg \phi}$ and $\map v {\phi \lor \psi}$ recursively, by:
\(\ds \map v {\neg \phi}\) | \(:=\) | \(\ds \begin{cases} 2 & : \text{if } \map v \phi = 0 \\ 1 & : \text{if } \map v \phi = 1 \\ 0 & : \text{if } \map v \phi = 2 \end{cases}\) | ||||||||||||
\(\ds \map v {\phi \lor \psi}\) | \(:=\) | \(\ds \begin{array}{c|ccc} \phi \lor \psi & 0 & 1 & 2 \\ \hline 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 2 \\ 2 & 0 & 2 & 2 \\ \end{array}\) |
Validity
Define validity in $\mathscr C_3$ by declaring:
- $\models_{\mathscr C_3} \phi$ if and only if $\map v \phi \in \set {0, 1}$
Examples
Sources
- 1959: A.H. Basson and D.J. O'Connor: Introduction to Symbolic Logic (3rd ed.) ... (previous) ... (next): $\S 4.6$: Independence