Definition:Cyclic Representation of C*-Algebra
Jump to navigation
Jump to search
Definition
Let $\struct {A, \ast, \norm {\, \cdot \,} }$ be a $\text C^\ast$-algebra.
Let $\tuple {\pi, \HH}$ be a representation of $\struct {A, \ast, \norm {\, \cdot \,} }$.
We call $\tuple {\pi, \HH}$ cyclic if and only if there exists $e \in \HH$ such that:
- $\set {\map \pi a e : a \in A}$ is everywhere dense in $\HH$.
We call $e$ a cyclic vector.
Sources
- 1990: John B. Conway: A Course in Functional Analysis (2nd ed.) ... (previous) ... (next) $\text {VIII}.5.6$