Definition:Degree of Polynomial/Zero
Jump to navigation
Jump to search
Definition
Let $\struct {R, +, \circ}$ be a ring whose zero is $0_R$.
Let $\struct {S, +, \circ}$ be a subring of $R$.
For arbitrary $x \in R$, let $S \sqbrk x$ be the set of polynomials in $x$ over $S$.
A polynomial $f \in S \sqbrk x$ in $x$ over $S$ is of degree zero if and only if $x$ is a non-zero element of $S$, that is, a constant polynomial.
Sources
- 1978: Thomas A. Whitelaw: An Introduction to Abstract Algebra ... (previous) ... (next): $\S 64$. Polynomial rings over an integral domain: Remarks $\text{(a)}$