Definition:Diffeomorphism

From ProofWiki
Jump to navigation Jump to search

Open sets in $\R^n$

Let $n$ and $k$ be natural numbers.

Let $U,V\subset \R^n$ be open sets.

Let $f : U \to V$ be a mapping.


Then $f$ is a $C^k$-diffeomorphism if and only if $f$ is a bijection of class $C^k$ with an inverse of class $C^k$.


Differentiable Manifolds

Let $m, n \ge 0$ and $k$ be natural numbers with $1 \le k \le \min \set {m, n}$.

Let $M$ and $N$ be differentiable manifolds of dimensions $m$ and $n$.

Let $f: M \to N$ be a mapping.


Then $f$ is a $C^k$-diffeomorphism if and only if $f$ is a bijection of class $C^k$ with an inverse of class $C^k$.


Smooth Diffeomorphism

A smooth diffeomorphism is a bijection which is smooth and whose inverse is smooth.


Sources