# Definition:Dihedral Group D4

## Example of Dihedral Group

The dihedral group $D_4$ is the symmetry group of the square:

Let $\SS = ABCD$ be a square.

The various symmetry mappings of $\SS$ are:

the identity mapping $e$
the rotations $r, r^2, r^3$ of $90^\circ, 180^\circ, 270^\circ$ around the center of $\SS$ anticlockwise respectively
the reflections $t_x$ and $t_y$ are reflections in the $x$ and $y$ axis respectively
the reflection $t_{AC}$ in the diagonal through vertices $A$ and $C$
the reflection $t_{BD}$ in the diagonal through vertices $B$ and $D$.

This group is known as the symmetry group of the square, and can be denoted $D_4$.

## Group Presentation

$D_4 = \gen {a, b: a^4 = b^2 = e, a b = b a^{-1} }$

## Cayley Table

$\begin{array}{l|cccccccc}  & e & a & a^2 & a^3 & b & b a & b a^2 & b a^3 \\  \hline e & e & a & a^2 & a^3 & b & b a & b a^2 & b a^3 \\ a & a & a^2 & a^3 & e & b a^3 & b & b a & b a^2 \\ a^2 & a^2 & a^3 & e & a & b a^2 & b a^3 & b & b a \\ a^3 & a^3 & e & a & a^2 & b a & b a^2 & b a^3 & b \\ b & b & b a & b a^2 & b a^3 & e & a & a^2 & a^3 \\ b a & b a & b a^2 & b a^3 & b & a^3 & e & a & a^2 \\ b a^2 & b a^2 & b a^3 & b & b a & a^2 & a^3 & e & a \\ b a^3 & b a^3 & b & b a & b a^2 & a & a^2 & a^3 & e  \end{array}$

## Matrix Representations

### Formulation 1

Let $\mathbf I, \mathbf A, \mathbf B, \mathbf C$ denote the following four elements of the matrix space $\map {\MM_\Z} 2$:

$\mathbf I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \mathbf A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \qquad \mathbf B = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \qquad \mathbf C = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

The set:

$D_4 = \set {\mathbf I, -\mathbf I, \mathbf A, -\mathbf A, \mathbf B, -\mathbf B, \mathbf C, -\mathbf C}$

under the operation of conventional matrix multiplication, forms the dihedral group $D_4$.

### Formulation 2

Let $\mathbf I, \mathbf A, \mathbf B, \mathbf C, \mathbf D, \mathbf E, \mathbf F, \mathbf G$ denote the following $8$ elements of the matrix space $\map {\MM_\Z} 2$:

$\mathbf I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \mathbf A = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix} \qquad \mathbf B = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \qquad \mathbf C = \begin{bmatrix} -i & 0 \\ 0 & i \end{bmatrix}$

$\mathbf D = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \qquad \mathbf E = \begin{bmatrix} 0 & i \\ -i & 0 \end{bmatrix} \qquad \mathbf F = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} \qquad \mathbf G = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$

The set:

$D_4 = \set {\mathbf I, \mathbf A, \mathbf B, \mathbf C, \mathbf D, \mathbf E, \mathbf F, \mathbf G}$

under the operation of conventional matrix multiplication, forms the dihedral group $D_4$.

## Subgroups

The subsets of $D_4$ which form subgroups of $D_4$ are:

 $\ds$  $\ds D_4$ $\ds$  $\ds \set e$ $\ds$  $\ds \set {e, a, a^2, a^3}$ $\ds$  $\ds \set {e, a^2}$ $\ds$  $\ds \set {e, b}$ $\ds$  $\ds \set {e, b a}$ $\ds$  $\ds \set {e, b a^2}$ $\ds$  $\ds \set {e, b a^3}$ $\ds$  $\ds \set {e, a^2, b, b a^2}$ $\ds$  $\ds \set {e, a^2, b a, b a^3}$

## Cosets of Subgroups

### Generated Subgroup $\gen b$

Let $H \subseteq D_4$ be defined as:

$H = \gen b$

where $\gen b$ denotes the subgroup generated by $b$.

From Subgroups of Dihedral Group D4 we have:

$\gen b = \set {e, b}$

### Left Cosets

The left cosets of $H$ are:

 $\ds e H$ $=$ $\ds \set {e, b}$ $\ds$ $=$ $\ds b H$ $\ds$ $=$ $\ds H$

 $\ds a H$ $=$ $\ds \set {a, b a^3}$ $\ds$ $=$ $\ds b a^3 H$

 $\ds a^2 H$ $=$ $\ds \set {a^2, b a^2}$ $\ds$ $=$ $\ds b a^2 H$

 $\ds a^3 H$ $=$ $\ds \set {a^3, b a}$ $\ds$ $=$ $\ds b a H$

### Right Cosets

The right cosets of $H$ are:

 $\ds H e$ $=$ $\ds \set {e, b}$ $\ds$ $=$ $\ds H b$ $\ds$ $=$ $\ds H$

 $\ds H a$ $=$ $\ds \set {a, b a}$ $\ds$ $=$ $\ds H b a$

 $\ds H a^2$ $=$ $\ds \set {a^2, b a^2}$ $\ds$ $=$ $\ds H b a^2$

 $\ds H a^3$ $=$ $\ds \set {a^3, b a^3}$ $\ds$ $=$ $\ds H b a^3$

It is seen that the left cosets do not equal the corresponding right cosets.

It follows by definition that $\gen b$ is not a normal subgroup of $D_4$.

## Center

The center of $D_4$ is given by:

$\map Z {D_4} = \set {e, a^2}$

## Also see

• Results about the dihedral group $D_4$ can be found here.